We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
请问,在使用re10k dataset训练整个模型结束后,再使用ScanNet, DeMoN, TartanAir, 和 VKITTI2这四个数据集微调,是这四个数据集全部都使用吗? 请问怎么同时使用这四个数据集微调才能得到论文中的性能呢? 论文中使用的是TartanAir数据比较的depth性能,这部分eval怎么实现的呢?感谢
The text was updated successfully, but these errors were encountered:
Hi 你好,我们release的 depth model是在这四个混合数据集上训练的。论文中的对比实验Table 3是在 TartanAir 和 VKITTI2上进行的。如果需要evaluation的code,我后面可以整理下开源到unimatch repo: https://github.com/autonomousvision/unimatch
Sorry, something went wrong.
理解了,非常感谢解答。 期待您开源evaluation code,再次非常感谢。
No branches or pull requests
请问,在使用re10k dataset训练整个模型结束后,再使用ScanNet, DeMoN, TartanAir, 和 VKITTI2这四个数据集微调,是这四个数据集全部都使用吗? 请问怎么同时使用这四个数据集微调才能得到论文中的性能呢? 论文中使用的是TartanAir数据比较的depth性能,这部分eval怎么实现的呢?感谢
The text was updated successfully, but these errors were encountered: