forked from marl917/enc_dec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseeded_sampler.py
241 lines (196 loc) · 9.8 KB
/
seeded_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
''' Samples from a (class-conditional) GAN, so that the samples can be reproduced '''
import os
import pickle
import random
import copy
import torch
from torch import nn
from gan_training.checkpoints import CheckpointIO
from gan_training.config import (load_config, build_models)
from seeing.yz_dataset import YZDataset
from gan_training.inputs import get_dataset
from gan_training.distributions import get_ydist, get_zdist
from gan_training import utils
def get_most_recent(models):
model_numbers = [
int(model.split("model.pt")[0]) if model != "model.pt" else 0
for model in models
]
return str(max(model_numbers)) + "model.pt"
class SeededSampler():
def __init__(
self,
config_name, # name of experiment's config file
model_path="", # path to the model. empty string infers the most recent checkpoint
pretrained={}, # urls to the pretrained models
rootdir='./',
device='cuda:0',
useLabelGen=False,
iteration_label_gen=None):
self.config = load_config(os.path.join(rootdir, config_name), 'configs/default.yaml')
self.model_path = model_path
self.rootdir = rootdir
self.nlabels = self.config['decoder']['nlabels']
self.device = device
self.pretrained = pretrained
self.useLabelGen = useLabelGen
self.decoder, self.encoderOrLabGen = self.get_decoderencoder(useLabelGen=useLabelGen, iteration_label_gen=iteration_label_gen)
self.decoder.eval()
self.encoderOrLabGen.eval()
#self.yz_dist = self.get_yz_dist()
train_dataset, _, _ = get_dataset(
name=self.config['data']['type'],
data_dir=self.config['data']['train_dir'],
size=self.config['data']['img_size'],
deterministic=self.config['data']['deterministic'])
self.batch_size = 100 #hardcoded
self.train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=self.batch_size,
num_workers=self.config['training']['nworkers'],
shuffle=True,
pin_memory=True,
sampler=None,
drop_last=True)
self.zdist = get_zdist(self.config['z_dist']['type'], self.config['z_dist']['dim'])
def sample(self, nimgs):
'''
samples an image using the generator, with z drawn from isotropic gaussian, and y drawn from self.yz_dist.
For baseline methods, y doesn't matter because y is ignored in the input
yz_dist is the empirical label distribution for the clustered gans.
returns the image, and the integer seed used to generate it. generated sample is in [-1, 1]
'''
self.generator.eval()
with torch.no_grad():
seeds = [random.randint(0, 1e8) for _ in range(nimgs)]
z, y = self.yz_dist(seeds)
return self.generator(z, y), seeds
def sample_fromDataset(self, nimgs):
self.decoder.eval()
self.encoderOrLabGen.eval()
with torch.no_grad():
x_real,y=next(iter(self.train_loader))
z = self.zdist.sample((self.batch_size,))
x_real= x_real.to('cuda')
_, _, label_map = self.encoderOrLabGen(x_real)
return self.decoder(z, label_map)[:nimgs,:,:,:], None
def sample_fromLabelGenerator(self,nimgs): #to use if useLabelGen=True
self.decoder.eval()
self.encoderOrLabGen.eval()
with torch.no_grad():
z_lab = self.zdist.sample((self.batch_size,))
z = self.zdist.sample((self.batch_size,))
_,input_semantics = self.encoderOrLabGen(z_lab)
return self.decoder(z, seg= input_semantics)[:nimgs, :, :, :], None
def conditional_sample(self, yi, seed=None):
''' returns a generated sample, which is in [-1, 1], seed is an int'''
self.generator.eval()
with torch.no_grad():
if seed is None:
seed = [random.randint(0, 1e8)]
else:
seed = [seed]
z, _ = self.yz_dist(seed)
y = torch.LongTensor([yi]).to(self.device)
return self.generator(z, y)
def sample_with_seed(self, seeds):
''' returns a generated sample, which is in [-1, 1] '''
self.generator.eval()
z, y = self.yz_dist(seeds)
return self.generator(z, y)
def get_zy(self, seeds):
'''returns the batch of z, y corresponding to the seeds'''
return self.yz_dist(seeds)
def sample_with_zy(self, z, y):
''' returns a generated sample given z and y, which is in [-1, 1].'''
self.generator.eval()
return self.generator(z, y)
def get_decoderencoder(self, useLabelGen=False, iteration_label_gen = None):
''' loads a decoder/encoder according to self.model_path '''
exp_out_dir = os.path.join(self.rootdir, self.config['training']['out_dir'])
# infer checkpoint if neeeded
checkpoint_dir = os.path.join(exp_out_dir, 'chkpts') if self.model_path == "" or 'model' in self.pretrained else "./"
model_name = get_most_recent(os.listdir(checkpoint_dir)) if self.model_path == "" else self.model_path
checkpoint_io = CheckpointIO(checkpoint_dir=checkpoint_dir)
print("checkpoint dir : ", checkpoint_dir, model_name)
self.checkpoint_io = checkpoint_io
if not useLabelGen:
decoder, encoder, disc = build_models(self.config)
decoder = decoder.to(self.device)
decoder = nn.DataParallel(decoder)
encoder = encoder.to(self.device)
encoder = nn.DataParallel(encoder)
if self.config['training']['take_model_average']:
decoder_test = copy.deepcopy(decoder)
checkpoint_io.register_modules(decoder_test=decoder_test)
else:
decoder_test = decoder
checkpoint_io.register_modules(decoder=decoder, encoder=encoder)
try:
it = checkpoint_io.load(model_name, pretrained=self.pretrained)
assert (it != -1)
except Exception as e:
# try again without data parallel
print(e)
checkpoint_io.register_modules(decoder=decoder.module)
checkpoint_io.register_modules(encoder=encoder.module)
checkpoint_io.register_modules(decoder_test=decoder_test.module)
it = checkpoint_io.load(model_name, pretrained=self.pretrained)
assert (it != -1)
print('Loaded iteration:', it['it'])
return decoder_test, encoder
else:
# decoder, encoder, label_generator, _, _ = build_models(self.config)
decoder, encoder, discriminator, label_generator, label_discriminator = build_models(self.config)
print("size img config" , self.config['data']['img_size'])
label_generator = label_generator.to(self.device)
label_generator = nn.DataParallel(label_generator)
decoder = decoder.to(self.device)
decoder = nn.DataParallel(decoder)
checkpoint_io.register_modules(label_generator = label_generator, decoder = decoder)
if iteration_label_gen!=None:
it_lab = iteration_label_gen
else:
it_lab = utils.get_most_recent(os.path.join(exp_out_dir, 'chkpts'), 'label_gen')
print("Loading iteration from label gen pretrained model : ", it_lab)
try:
it= checkpoint_io.load(os.path.join(exp_out_dir, 'chkpts','model_%08d.pt' % it_lab))
assert (it != -1)
except Exception as e:
print(e)
checkpoint_io.register_modules(decoder=decoder.module)
checkpoint_io.register_modules(label_generator=label_generator.module)
it = checkpoint_io.load(os.path.join(exp_out_dir, 'chkpts', 'model_%08d.pt' % it_lab))
assert (it != -1)
return decoder, label_generator
def get_yz_dist(self):
'''loads the z and y dists used to sample from the generator.'''
if self.config['clusterer']['name'] != 'supervised':
print(self.clusterer_path)
if 'clusterer' in self.pretrained:
clusterer = self.checkpoint_io.load_clusterer('pretrained', load_samples=False, pretrained=self.pretrained)
elif os.path.exists(self.clusterer_path):
with open(self.clusterer_path, 'rb') as f:
clusterer = pickle.load(f)
if isinstance(clusterer.discriminator, nn.DataParallel):
clusterer.discriminator = clusterer.discriminator.module
if clusterer.kmeansG is not None:
# use clusterer empirical distribution as sampling
print('Using k-means empirical distribution')
distribution = clusterer.get_label_distribution()
probs = [f / sum(distribution) for f in distribution]
else:
# otherwise, use a uniform distribution. this is not desired, unless it's a random label or unconditional GAN
print("Sampling with uniform distribution over", clusterer.k, "labels")
probs = [1. / clusterer.k for _ in range(clusterer.k)]
else:
# if it's supervised, then sample uniformly over all classes.
# this might not be the right thing to do, since datasets are usually imbalanced.
print("Sampling with uniform distribution over", self.nlabels,
"labels")
probs = [1. / self.nlabels for _ in range(self.nlabels)]
self.clusterer=clusterer
return YZDataset(zdim=self.config['z_dist']['dim'],
nlabels=len(probs),
distribution=probs,
device=self.device)