-
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmeta.yaml
91 lines (75 loc) · 2.4 KB
/
meta.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
{% set version = "4.4.1" %}
package:
name: pcraster
version: {{ version }}
source:
url: http://pcraster.geo.uu.nl/pcraster/packages/src/pcraster-{{ version }}.tar.bz2
sha256: 99edb3ada4e960fbb0d39b6cb4dee08b37983aa1412ab23ef74f0c4172fb80a7
build:
number: 10
ignore_run_exports_from:
- libboost-devel
requirements:
build:
- python # [build_platform != target_platform]
- cross-python_{{ target_platform }} # [build_platform != target_platform]
- numpy # [build_platform != target_platform]
- {{ compiler('c') }}
- {{ stdlib("c") }}
- {{ compiler('cxx') }}
- cmake
- ninja
- make # [win]
host:
- xorg-libxfixes # [linux]
- libgl-devel # [linux]
- libboost-devel
- xerces-c
- qt-main
- ncurses # [not win]
- libgdal
- python
- numpy
- vs2015_runtime # [win]
- libglu # [linux]
run:
- python
- libgdal
- ncurses # [not win]
- vs2015_runtime # [win]
- libglu # [linux]
test:
imports:
- pcraster
commands:
- asc2map
- col2map
- legend
- map2asc
- map2col
- mapattr
- oldcalc
- pcrcalc
- resample
- table
about:
home: http://www.pcraster.eu
license: GPL-3.0-only
license_file: LICENSE
summary: Environmental modelling software.
description: |
PCRaster is a collection of tools and software libraries tailored to the
construction of spatio-temporal environmental models. Application domains
are amongst others hydrology (rainfall-runoff, global water balance,
groundwater (with Modflow)), ecology, or land use change.
PCRaster includes a rich set of spatial operations for manipulating and
analysing raster maps. A Python framework supports Monte Carlo simulations
and data assimilation (Ensemble Kalman Filter and Particle Filter). The
Aguila tool allows for the interactive visualisation of stochastic spatio-
temporal data.
doc_url: https://pcraster.geo.uu.nl/pcraster/latest/documentation/index.html
dev_url: https://github.com/pcraster/pcraster
extra:
recipe-maintainers:
- OliverSchmitz
- kordejong