-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathls_mab_comb_ori_Comb-decodeconcat-tunelast18-round.py
1666 lines (1438 loc) · 77.9 KB
/
ls_mab_comb_ori_Comb-decodeconcat-tunelast18-round.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
File name: run.py
Author: locke
Date created: 2020/3/25 下午6:58
"""
import time
import argparse
import os
import pathlib
import gc
import random
import math
import numpy as np
import scipy.sparse as sp
import multiprocessing
from multiprocessing import Pool
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from load_data import *
from models import *
from utils import *
import copy
# from torch.utils.tensorboard import SummaryWriter
# import logging
from sklearn.cluster import KMeans
import scipy
import sys, logging
import json, pickle
import random
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import scipy.stats as ss
import faiss
from pathlib import Path
from random import shuffle
from sklearn import metrics
from collections import defaultdict
from pathlib import Path
from tqdm import tqdm
from torch.utils.data import IterableDataset
from transformers import AutoModel, AutoTokenizer
from sentence_transformers import SentenceTransformer
from typing import Dict, List, Tuple
# logging.basicConfig(
# level=logging.INFO,
# format='[%(asctime)s %(levelname)s] - %(message)s'
# )
# logger = logging.getLogger(__name__)
import torch.nn.functional as F
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float().to(device)
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
class TransformerEncoder(nn.Module):
def __init__(
self,
pretrained_model,
channels: int = 1,
):
super(TransformerEncoder, self).__init__()
self.transformers = torch.nn.ModuleList()
for c in range(channels):
self.transformers.append(AutoModel.from_pretrained(pretrained_model))
def forward(
self,
tokens,
channel,
):
embeddings = self.transformers[channel](
torch.squeeze(tokens['input_ids']).to(device),
torch.squeeze(tokens['attention_mask']).to(device)
)[0].to(device)
return embeddings
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float().to(device)
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
class TwoTower(nn.Module):
def __init__(
self,
pretrained_model,
):
super(TwoTower, self).__init__()
self.tower = TransformerEncoder(pretrained_model)
# self.loss_fn = torch.nn.CrossEntropyLoss()
# self.loss_fn = nn.CrossEntropyLoss()
def forward(self, query_tokens, doc_tokens, labels):
query_embeddings = self.tower(query_tokens,0)[:, 0].to(device)
doc_embeddings = self.tower(doc_tokens,0)[:, 0].to(device)
scores = torch.cosine_similarity(query_embeddings, doc_embeddings)
# print("labels:",labels)
# print("scores:",scores)
# loss = self.loss_fn(scores, labels).sum()
m = nn.Sigmoid()
loss = nn.BCELoss()
self.loss_fn = loss(m(scores), labels.to(device))
loss = self.loss_fn.sum()
return loss, scores
def embeds(self, doc_tokens):
# print("self.tower(doc_tokens,0)[:, 0]:", self.tower(doc_tokens,0)[:, 0])
# print()
return self.tower(doc_tokens,0).to(device) #[:, 0].to(device)
class FourTower(nn.Module):
def __init__(
self,
pretrained_model,
channels: int = 2,
):
super(FourTower, self).__init__()
self.towers = TransformerEncoder(pretrained_model, channels)
self.loss_fn = torch.nn.CrossEntropyLoss()
def forward(self, query_tokens, q_meta_tokens, doc_tokens, d_meta_tokens, labels):
query_embeddings = self.towers(query_tokens, 0)[:, 0]
doc_embeddings = self.towers(doc_tokens, 0)[:, 0]
q_meta_embeddings = self.towers(q_meta_tokens, 1)[:, 0]
d_meta_embeddings = self.towers(d_meta_tokens, 1)[:, 0]
scores = torch.cosine_similarity(
(query_embeddings+q_meta_embeddings),
(doc_embeddings+d_meta_embeddings)
)
loss = self.loss_fn(scores, labels).sum()
return loss, scores
def embeds(self, doc_tokens, meta_tokens):
return self.towers(doc_tokens, 0)[:, 0]+self.towers(meta_tokens, 1)[:, 0]
def dump_code2tokens(
kg_text_path: Path,
# kg_path: Path,
pretrained_model,
pickle_path: Path,
max_token_length = 64,
device = 'cpu',
):
pickle_path.parent.mkdir(parents=True, exist_ok=True)
tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
model = SentenceTransformer('bert-base-multilingual-cased', device=device)
# model = SentenceTransformer('colorfulscoop/sbert-base-ja', device=device)
# model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2', device=device)
logger.info('Load from')
# logger.info(kg_path)
e2m_list = defaultdict(list)
# with kg_path.open('r') as f:
# for line in f:
# ent, meta, _ = line.rstrip('\n').split(' ')
# e2m_list[ent].append(meta)
code2text = {}
logger.info('Load from')
logger.info(kg_text_path)
with kg_text_path.open('r') as f:
for line in tqdm(f):
text, code = line.rstrip('\n').split('\t')
code2text[str(code)] = text
codes = [str(code) for code in list(code2text.keys())]# if code[0]=='e']
code2tokens = {}
# get embeddings
logger.info('pre-compute embeddings')
entity_texts = [code2text[code] for code in codes]
# print("entity_texts:",len(entity_texts))
# meta_texts = [
# ' '.join([code2text[m] for m in e2m_list[code]]) for code in codes]
entity_embeds = np.array(model.encode(entity_texts), dtype='float32')
# print("entity_embeds:",len(entity_embeds))
# meta_embeds = np.array(model.encode(meta_texts), dtype='float32')
# for code, e1, e2 in zip(codes, entity_embeds, meta_embeds):
for code, e1 in zip(codes, entity_embeds):
code2tokens[code] = {}
code2tokens[code]['entity_embed'] = e1
# code2tokens[code]['meta_embed'] = e2
# get tokens
logger.info('pre-compute tokenizations')
for code in tqdm(codes, total=len(codes)):
tokens = tokenizer(
f"{code2text[code]}",
truncation=True,
max_length=max_token_length,
padding='max_length',
return_tensors="pt",
)
code2tokens[code]['entity_tokens'] = tokens
# meta_text = ' '.join([code2text[m] for m in e2m_list[code]])
# tokens = tokenizer(
# f"{meta_text}",
# truncation=True,
# max_length=max_token_length,
# padding='max_length',
# return_tensors="pt",
# )
# code2tokens[code]['meta_tokens'] = tokens
logger.info('Save to')
logger.info(pickle_path)
pickle.dump(code2tokens, pickle_path.open('wb'))
class RawDataset(IterableDataset):
def __init__(self):
pass
def __call__(
self,
code2tokens_path: Path,
):
self.code2tokens = pickle.load(code2tokens_path.open('rb'))
return self
def __len__(self):
return len(self.code2tokens)
def __iter__(self):
for code in self.code2tokens:
yield \
code, \
self.code2tokens[code]['entity_tokens']
#####
class RawDataset_last(IterableDataset):
def __init__(self):
pass
def __call__(
self,
code2tokens_path: Path,
):
self.code2tokens = code2tokens_path
return self
def __len__(self):
return len(self.code2tokens)
def __iter__(self):
for code in self.code2tokens:
yield \
code, \
self.code2tokens[code]['entity_tokens']
#####
class PairsDataset(IterableDataset):
def __init__(self):
pass
def __call__(
self,
train_pairs_path: Path,
code2tokens_path: Path,
):
logger.info('Load tokens/embeds')
self.code2tokens = pickle.load(code2tokens_path.open('rb'))
self.pairs = []
with train_pairs_path.open('r') as f:
for line in f:
code1, code2 = line.rstrip('\n').split('\t')
self.pairs.append((str(code1), str(code2)))
logger.info('build ANN')
self.codes = [code for code in self.code2tokens]
self.index = {code:e for e, code in enumerate(self.codes)}
self.entity_embeds = np.array(
[self.code2tokens[code]['entity_embed'] for code in self.codes], dtype='float32')
self.entity_nn = faiss.IndexFlatIP(len(self.entity_embeds[0]))
self.entity_nn.add(self.entity_embeds)
return self
def __iter__(self):
shuffle(self.pairs)
rand_max = len(self.codes) - 1
retrieval_max = 200
for pair in self.pairs:
# positive
yield \
self.code2tokens[pair[0]]['entity_tokens'], \
self.code2tokens[pair[1]]['entity_tokens'], \
1.0
query_idx0 = self.index[pair[0]]
query_idx1 = self.index[pair[1]]
# entity-based negatives
_, similars0 = self.entity_nn.search(
self.entity_embeds[query_idx0:query_idx0+1], retrieval_max)
_, similars1 = self.entity_nn.search(
self.entity_embeds[query_idx1:query_idx1+1], retrieval_max)
for _ in range(2): # hard negative
rand_code = self.codes[similars0[0][random.randint(10, retrieval_max-1)]]
yield \
self.code2tokens[pair[0]]['entity_tokens'], \
self.code2tokens[rand_code]['entity_tokens'], \
0.0
for _ in range(2): # easy negative
rand_code = self.codes[random.randint(0, rand_max)]
yield \
self.code2tokens[pair[0]]['entity_tokens'], \
self.code2tokens[rand_code]['entity_tokens'], \
0.0
for _ in range(2): # hard negative
rand_code = self.codes[similars1[0][random.randint(10, retrieval_max-1)]]
yield \
self.code2tokens[pair[1]]['entity_tokens'], \
self.code2tokens[rand_code]['entity_tokens'], \
0.0
for _ in range(2): # easy negative
rand_code = self.codes[random.randint(0, rand_max)]
yield \
self.code2tokens[pair[1]]['entity_tokens'], \
self.code2tokens[rand_code]['entity_tokens'], \
0.0
# ================================================================================================================
# --- SBert ---
from sentence_transformers import SentenceTransformer
from huggingface_hub import snapshot_download
# sbert = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
# sbert = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# sbert = SentenceTransformer("colorfulscoop/sbert-base-ja")
# --- SBert end ---
# --- Seq Mathcer ---
from difflib import SequenceMatcher
# --- Deq End ---
def sb_multi(names):
tmp = [sbert.encode(n) for n in names]
return tmp
sbert_embeddings = None
ins_names = None
class Experiment:
def __init__(self, args):
self.vali = False
self.save = args.save
self.save_prefix = "%s_%s" % (args.data_dir.split("/")[-1], args.log)
self.hiddens = list(map(int, args.hiddens.split(",")))
self.heads = list(map(int, args.heads.split(",")))
self.args = args
self.args.encoder = args.encoder.lower()
self.args.encoder1 = args.encoder1.lower()
self.args.decoder = args.decoder.lower()
self.args.sampling = args.sampling
self.args.k = int(args.k)
self.args.margin = float(args.margin)
self.args.alpha = float(args.alpha)
##ent pairs
self.lefts_test = [i[0] for i in d.ill_test_idx]
self.rights_test = [i[1] for i in d.ill_test_idx]
self.lefts_train = [i[0] for i in d.ill_train_idx]
self.rights_train = [i[1] for i in d.ill_train_idx]
self.lefts = [i[0] for i in d.ill_idx]
self.rights = [i[1] for i in d.ill_idx]
if len(self.lefts) > 15000:
self.lefts = self.lefts[len(self.lefts) - 15000:]
self.rights = self.rights[len(self.rights) - 15000:]
self.fc1 = torch.nn.Linear(self.hiddens[-1], self.hiddens[-1]).to(device)
self.fc2 = torch.nn.Linear(self.hiddens[-1], self.hiddens[-1]).to(device)
self.cached_sample = {}
self.best_result = ()
def evaluate(self, it, test, ins_emb, ins_emb1, mapping_emb=None, vali_flag= False):
t_test = time.time()
top_k = [1, 3, 5, 10, 20, 30, 50, 70, 100, 200, 300, 500, 1000]
# print(ins_emb.shape)
# print(len(ins_emb))
if mapping_emb is not None:
print("using mapping")
left_emb = mapping_emb[test[:, 0]]
else:
left_emb = ins_emb[test[:, 0]]
right_emb = ins_emb[test[:, 1]]
distance = - sim(left_emb, right_emb, metric=self.args.test_dist, normalize=True,
csls_k=self.args.csls) # normalize = True.... False can increase performance
if self.args.two_views == 1 and self.args.fuse_embed != 1:
left_emb1 = ins_emb1[test[:, 0]]
right_emb1 = ins_emb1[test[:, 1]]
distance1 = - sim(left_emb1, right_emb1, metric=self.args.test_dist, normalize=True, csls_k=self.args.csls)
distance = distance * self.args.alp + distance1 * (1 - self.args.alp)
if self.args.rerank:
indices = np.argsort(np.argsort(distance, axis=1), axis=1)
indices_ = np.argsort(np.argsort(distance.T, axis=1), axis=1)
distance = indices + indices_.T
tasks = div_list(np.array(range(len(test))), 10)
pool = multiprocessing.Pool(processes=len(tasks))
reses = list()
for task in tasks:
reses.append(
pool.apply_async(multi_cal_rank, (task, distance[task, :], distance[:, task], top_k, self.args)))
pool.close()
pool.join()
acc_l2r, acc_r2l = np.array([0.] * len(top_k)), np.array([0.] * len(top_k))
mean_l2r, mean_r2l, mrr_l2r, mrr_r2l = 0., 0., 0., 0.
for res in reses:
(_acc_l2r, _mean_l2r, _mrr_l2r, _acc_r2l, _mean_r2l, _mrr_r2l) = res.get()
acc_l2r += _acc_l2r
mean_l2r += _mean_l2r
mrr_l2r += _mrr_l2r
acc_r2l += _acc_r2l
mean_r2l += _mean_r2l
mrr_r2l += _mrr_r2l
mean_l2r /= len(test)
mean_r2l /= len(test)
mrr_l2r /= len(test)
mrr_r2l /= len(test)
for i in range(len(top_k)):
acc_l2r[i] = round(acc_l2r[i] / len(test), 4)
acc_r2l[i] = round(acc_r2l[i] / len(test), 4)
if vali_flag is False:
print("l2r: acc of top {} = {}, mr = {:.3f}, mrr = {:.3f}, time = {:.4f} s ".format(top_k, acc_l2r.tolist(),
mean_l2r, mrr_l2r,
time.time() - t_test))
print("r2l: acc of top {} = {}, mr = {:.3f}, mrr = {:.3f}, time = {:.4f} s \n".format(top_k, acc_r2l.tolist(),
mean_r2l, mrr_r2l,
time.time() - t_test))
return (acc_l2r, mean_l2r, mrr_l2r, acc_r2l, mean_r2l, mrr_r2l)
def init_emb(self):
print("Start Init")
e_scale, r_scale = 1, 1
self.ins_embeddings = nn.Embedding(d.ins_num, self.hiddens[0] * e_scale).to(device)
self.rel_embeddings = nn.Embedding(d.rel_num, int(self.hiddens[0] * r_scale)).to(device)
# if self.args.mytest:
# global sbert_embeddings
# global ins_names
# if self.args.sbert and sbert_embeddings==None:
# ins_names = [ d.id2ins_dict[i] for i in range(d.ins_num)]
# sb_embs = [sbert.encode(n[n.rindex("_")+1:]) if '_' in n else sbert.encode(n) for n in ins_names]
# sbert_embeddings = torch.tensor(sb_embs).to(device)
# elif self.args.seq and ins_names==None:
# ins_names = [ d.id2ins_dict[i][d.id2ins_dict[i].rindex("_")+1:] if '_' in d.id2ins_dict[i] else d.id2ins_dict[i] for i in range(d.ins_num)]
nn.init.xavier_normal_(self.ins_embeddings.weight)
nn.init.xavier_normal_(self.rel_embeddings.weight)
self.enh_ins_emb = self.ins_embeddings.weight.cpu().detach().numpy()
self.mapping_ins_emb = None
print("Finish Init")
def prepare_input(self, sb_fine_tune): #[For Iter only]
graph_encoder = Encoder(self.args.encoder, self.hiddens, self.heads + [1], self.args.appkk, activation=F.elu,
feat_drop=self.args.feat_drop, attn_drop=self.args.attn_drop, negative_slope=0.2,
bias=False).to(device)
knowledge_decoder = Decoder(self.args.decoder, params={
"e_num": d.ins_num,
"r_num": d.rel_num,
"dim": self.hiddens[-1],
"feat_drop": self.args.feat_drop,
"train_dist": self.args.train_dist,
"sampling": self.args.sampling,
"k": self.args.k,
"margin": self.args.margin,
"alpha": self.args.alpha,
"boot": self.args.bootstrap,
# pass other useful parameters to Decoder
}).to(device)
# print(knowledge_decoder)x1
train = np.array(d.ill_train_idx.tolist())
np.random.shuffle(train)
pos_batch = train
print(len(pos_batch))
# all_pos_ids = list(pos_batch.flatten('C')) ## all_pos_ids
## SBERT model fine-tune preprocessing...
# print("SBERT model fine-tune preprocessing...")
logger.info('SBERT model fine-tune preprocessing...')
dataset = self.args.finetune_dataset #"KK100-JP-3epoch"
epoch = self.args.finetune_epoch
print(epoch, type(epoch))
# print("len(pos_batch) = ",len(pos_batch))
all_pos_batch_ids = list(pos_batch.flatten('C')) ## all_pos_ids
# all_pos_ids = [ i for i in range(d.ins_num)]
global sbert_embeddings
global ins_names
ins_names = [ d.id2ins_dict[i] for i in range(d.ins_num)]
all_pos_ids = [ str(i) for i in range(d.ins_num)]
print("sb_fine_tune==1:",sb_fine_tune==1)
print("sbert_embeddings==None:",sbert_embeddings==None)
if sb_fine_tune == 1 or sbert_embeddings==None:
### [FOR ITER ONLY] ###
## step1. Write line-kg.idx.txt (name \t id)
print("step1. Write line-kg.idx.txt (name \t id)")
logger.info('step1. Write line-kg.idx.txt (name \t id)')
df = pd.DataFrame()
df['name'] = ins_names
df['id'] = all_pos_ids
df.to_csv("./sbert-fine-tune-dataset/"+dataset+"/line-kg.idx.txt", header=None, index=None, sep='\t')
del df
##### Twotower 不需要此檔!! #####
## step2. Write line-kg.txt (id1 " " id2 " " 1)
# print("step2. Write line-kg.txt (id1 " " id2 " " 1)")
# id1_list = all_pos_batch_ids[::2 ] ## 奇數位 index 的就是 left ent 的 id
# id2_list = all_pos_batch_ids[1::2] ## 偶數位 index 的就是 left ent 的 id
# label_list = [ 1 for _ in range(len(id1_list))]
# df = pd.DataFrame()
# df['pos_left'] = id1_list
# df['pos_right'] = id2_list
# df['y'] = label_list
# df.to_csv("sbert-fine-tune-dataset/line-kg.txt", header=None, index=None, sep=' ')
# del df
## step3. Write train.pairs (id1 \t id2)
print("step3. Write train.pairs (id1 \t id2)")
logger.info('step3. Write train.pairs (id1 \t id2)')
id1_list = all_pos_batch_ids[::2 ] ## 奇數位 index 的就是 left ent 的 id
id2_list = all_pos_batch_ids[1::2] ## 偶數位 index 的就是 left ent 的 id
df = pd.DataFrame()
df['pos_left'] = id1_list
df['pos_right'] = id2_list
df.to_csv("./sbert-fine-tune-dataset/"+dataset+"/train.pairs", header=None, index=None, sep='\t')
del id1_list
del id2_list
del df
### [FOR ITER ONLY END] ###
print("Finish SBERT model fine-tune preprocessing...")
logger.info('Finish SBERT model fine-tune preprocessing...')
print("SBERT model training...")
logger.info('SBERT model training...')
# dataset = self.args.finetune_dataset #"KK100-JP-3epoch"
# epoch = self.args.finetune_epoch
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pretrained_model ='bert-base-multilingual-cased' # 'sentence-transformers/all-mpnet-base-v2' #'bert-base-multilingual-cased' 'colorfulscoop/sbert-base-ja'
pretrained_ckpt = str(0) #'' ##str(epoch-1) ##[For iter only]
batch_size = 20
model_path = Path('./sbert-fine-tune-model_status/'+dataset)
embed_path = Path('twotower.embed')
pairs_path = Path('./sbert-fine-tune-dataset/'+dataset+'/train.pairs') #sys.argv[1]
sbert = TwoTower(pretrained_model)
sbert.to(device)
if args.load_from_ori == 0:
if Path(model_path/pretrained_ckpt).exists():
# twotower.load_state_dict(torch.load(model_path/pretrained_ckpt))
print("load_state_dict: ", model_path/pretrained_ckpt)
logger.info('load_state_dict')
sbert.load_state_dict(torch.load(model_path/pretrained_ckpt, map_location=device))
# twotower.to(device)
sbert.to(device)
### Settings for only tuning (last 19 layers) (11+pool) ###
for name, param in list(sbert.named_parameters())[:-18]:
# print(name)
param.requires_grad = False
for name, param in (sbert.named_parameters()):
if param.requires_grad == True:
print(name)
### ####################################################### ###
if not Path(f'./sbert-fine-tune-dataset/'+dataset+'/code2tokens').exists():
dump_code2tokens(
kg_text_path=Path('./sbert-fine-tune-dataset/'+dataset+'/line-kg.idx.txt'),
# kg_path=Path('./sbert-fine-tune-dataset/line-kg.txt'),
pretrained_model=pretrained_model,
pickle_path=Path(f'./sbert-fine-tune-dataset/'+dataset+'/code2tokens'),
device=device,
)
print("sb_fine_tune == 1:",sb_fine_tune == 1)
print("sbert_embeddings==None:",sbert_embeddings==None)
if sb_fine_tune == 1 or sbert_embeddings==None: #[For Iter only]
### [FOR ITER ONLY] ###
if epoch != 0:
print("epoch!=0 start training...")
logger.info('epoch!=0 start training...')
pairs_dataset = PairsDataset()
dataloader = torch.utils.data.DataLoader(
pairs_dataset(
train_pairs_path=Path(pairs_path),
code2tokens_path=Path('./sbert-fine-tune-dataset/'+dataset+'/code2tokens'),
),
batch_size=batch_size,
drop_last = True
)
# optimizer = optim.AdamW(twotower.parameters(), lr=0.00002)
optimizer = optim.AdamW(sbert.parameters(), lr=0.00002)
optimizer.zero_grad()
total_loss, total_cnt = 0., 0
for e_ in range(int(epoch)): ### Change training epochs...
for query_tokens, doc_tokens, labels in tqdm(dataloader):
# loss, scores = twotower.forward(
loss, scores = sbert.forward(
query_tokens=query_tokens,
doc_tokens=doc_tokens,
labels=labels.type(torch.float),
)
total_loss += loss
loss.requires_grad_(True) ### tunepool 要加這個!
loss.backward()
optimizer.step()
optimizer.zero_grad()
total_cnt += 1
if (total_cnt % 10)==0:
logger.info(f"Avg. Loss: {total_loss/10}")
total_cnt, total_loss = 0., 0.
del dataloader
model_path.mkdir(parents=True, exist_ok=True)
print("model_path:",model_path)
# logger.info(f"\nsave ckpt to\t{model_path}/{int(epoch)-1}")
logger.info(f"\nsave ckpt to\t{model_path}/{pretrained_ckpt}") ##[For iter only]
# torch.save(twotower.state_dict(), model_path/f'{e_}')
# torch.save(sbert.state_dict(), model_path/f'{int(epoch)-1}')
torch.save(sbert.state_dict(), model_path/f'{pretrained_ckpt}') ##[For iter only]
print("Finish SBERT model training...")
logger.info('Finish SBERT model training...')
### [FOR ITER ONLY END] ###
print("Init SBERT embeddings:...")
logger.info('Init SBERT embeddings:...')
# if self.args.mytest and sbert_embeddings == None:
print('self.args.mytest and sb_fine_tune == 1:',self.args.mytest and sb_fine_tune == 1)
print('sbert_embeddings == None:',sbert_embeddings == None)
if (self.args.mytest and sb_fine_tune == 1) or sbert_embeddings == None: ## [this line is FOR ITER ONLY]
# global sbert_embeddings
sb_embs = []
raw_dataset = RawDataset()
dataloader_raw = torch.utils.data.DataLoader(
raw_dataset(
code2tokens_path=Path('./sbert-fine-tune-dataset/'+dataset+'/code2tokens'),
),
batch_size=2, #1 #100 不能設1 一定要整除?
drop_last = True, ## 設這個才可以容許不能整除,但會丟棄最後一個不滿的batch
)
embeddings, dim = [], 0
for codes, doc_tokens in tqdm(dataloader_raw):
embeds = sbert.embeds(
doc_tokens=doc_tokens,
)
count = 0
for code, emb in zip(codes, embeds):
emb_new = emb.unsqueeze(0).to(device)
# print(emb_new.shape) #torch.Size([1, 64, 768])
# print(doc_tokens['attention_mask'][count].shape) #torch.Size([1, 64])
sb = mean_pooling(emb_new, doc_tokens['attention_mask'][count])
sentence_embeddings = F.normalize(sb, p=2, dim=1)
embed = ' '.join(map(str, sentence_embeddings.tolist()))
embeddings.append(f"{code}\t{embed}")
sb_embs.append(np.array(list(sentence_embeddings[0].cpu().detach().numpy())))
# print("count:",count)
count = count+1
dim = len(embeds[0])
# print("len(raw_dataset):",len(raw_dataset))
## 處理剩下被丟掉的那個 batch 的內容
last_dict = {}
if len(raw_dataset) % 2 != 0:
code2tokens = pickle.load(Path('./sbert-fine-tune-dataset/'+dataset+'/code2tokens').open('rb'))
last_dict[list(code2tokens.keys())[-2]] = code2tokens[list(code2tokens.keys())[-2]]
last_dict[list(code2tokens.keys())[-1]] = code2tokens[list(code2tokens.keys())[-1]]
raw_dataset = RawDataset_last()
dataloader_raw = torch.utils.data.DataLoader(
raw_dataset(
code2tokens_path=last_dict,# Path('code2tokens'),
),
batch_size=2, #1 #100 不能設1 一定要整除?
drop_last = True, ## 設這個才可以容許不能整除,但會丟棄最後一個不滿的batch
)
for codes, doc_tokens in tqdm(dataloader_raw):
embeds = sbert.embeds(
doc_tokens=doc_tokens,
)
count = 0
for code, emb in zip(codes, embeds):
if count == 1:
emb_new = emb.unsqueeze(0).to(device)
sb = mean_pooling(emb_new, doc_tokens['attention_mask'][count])
sentence_embeddings = F.normalize(sb, p=2, dim=1)
embed = ' '.join(map(str, sentence_embeddings.tolist()))
embeddings.append(f"{code}\t{embed}")
sb_embs.append(np.array(list(sentence_embeddings[0].cpu().detach().numpy())))
# embed = ' '.join(map(str, emb.tolist()))
# embeddings.append(f"{code}\t{embed}")
# sb_embs.append(np.array(list(emb.cpu().detach().numpy())))
count+=1
dim = len(embeds[0])
print("len(sb_embs):",len(sb_embs))
sbert_embeddings = torch.tensor(sb_embs).to(device)
# print(sbert_embeddings)
# print(sbert_embeddings.shape)
del sb_embs
elif self.args.seq and ins_names==None:
ins_names = [ d.id2ins_dict[i][d.id2ins_dict[i].rindex("_")+1:] if '_' in d.id2ins_dict[i] else d.id2ins_dict[i] for i in range(d.ins_num)]
print("Finish Init SBERT embeddings...")
logger.info('Finish Init SBERT embeddings...')
neg_batch = knowledge_decoder.sampling_method(pos_batch, d.triple_idx, d.ill_train_idx,
[d.kg1_ins_ids, d.kg2_ins_ids], knowledge_decoder.k,
params={"emb": self.enh_ins_emb, "metric": self.args.test_dist})
# print("neg_batch:\n",neg_batch)
print(len(neg_batch))
if self.args.two_views == 1 and self.vali is False:
graph_encoder1 = Encoder(self.args.encoder1, self.hiddens, self.heads + [1], self.args.appkk,
activation=F.elu,
feat_drop=self.args.feat_drop, attn_drop=self.args.attn_drop, negative_slope=0.2,
bias=False).to(device)
# print(graph_encoder1)
return graph_encoder, graph_encoder1, knowledge_decoder, pos_batch, neg_batch
else:
return graph_encoder, knowledge_decoder, pos_batch, neg_batch
def projection(self, z: torch.Tensor) -> torch.Tensor:
z = F.elu(self.fc1(z))
return self.fc2(z)
def sim(self, z1: torch.Tensor, z2: torch.Tensor):
z1 = F.normalize(z1)
z2 = F.normalize(z2)
return torch.mm(z1, z2.t())
def get_contrastive_loss(self, enh_emb, enh_emb1, temp=0.5):
enh_emb = self.projection(enh_emb)
enh_emb1 = self.projection(enh_emb1)
f = lambda x: torch.exp(x / temp)
refl_sim = f(self.sim(enh_emb, enh_emb))
refl_sim_sum1 = refl_sim.sum(1)
refl_sim_diag = refl_sim.diag()
del refl_sim
between_sim = f(self.sim(enh_emb, enh_emb1))
between_sim_sum1 = between_sim.sum(1)
between_sim_diag = between_sim.diag()
del between_sim
loss1 = -torch.log(between_sim_diag / (between_sim_sum1 + refl_sim_sum1 - refl_sim_diag))
refl_sim = f(self.sim(enh_emb1, enh_emb1))
refl_sim_sum1 = refl_sim.sum(1)
refl_sim_diag = refl_sim.diag()
del refl_sim
between_sim = f(self.sim(enh_emb1, enh_emb))
between_sim_sum1 = between_sim.sum(1)
between_sim_diag = between_sim.diag()
del between_sim
loss2 = -torch.log(between_sim_diag / (between_sim_sum1 + refl_sim_sum1 - refl_sim_diag))
loss = (loss1.sum() + loss2.sum()) / (2 * len(enh_emb))
# print(loss)
return loss
def get_loss(self, graph_encoder, graph_encoder1, knowledge_decoder, pos_batch, neg_batch, it):
graph_encoder.train()
knowledge_decoder.train()
neg = torch.LongTensor(neg_batch).to(device)
pos = torch.LongTensor(pos_batch).repeat(knowledge_decoder.k * 2, 1).to(device)
use_edges = torch.LongTensor(d.ins_G_edges_idx).to(device)
enh_emb = graph_encoder.forward(use_edges, self.ins_embeddings.weight)
if self.args.mytest:
if self.args.sbert:
global sbert_embeddings
sbert_emb = sbert_embeddings
if self.args.two_views == 1 and self.vali is False:
graph_encoder1.train()
enh_emb1 = graph_encoder1.forward(use_edges, self.ins_embeddings.weight)
enh_emb_final = enh_emb * self.args.alp + enh_emb1 * (1 - self.args.alp)
enh_emb_final = torch.cat([enh_emb_final, sbert_emb], 1)
print(enh_emb_final.shape)
# enh_emb_final = torch.cat((enh_emb, enh_emb1), dim=-1)
if self.args.fuse_embed == 1:
pos_score = knowledge_decoder.forward(enh_emb_final, self.rel_embeddings.weight, pos)
neg_score = knowledge_decoder.forward(enh_emb_final, self.rel_embeddings.weight, neg)
if self.args.mytest:
if self.args.sbert:
print("NEG0")
if not self.args.sb_w:
sb_neg_margin = knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos")
elif self.args.sb_w == 'w1':
sb_neg_margin = neg_score*(knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos"))
elif self.args.sb_w == 'w1-new':
sb_neg_margin = neg_score*((knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos")+1)*0.5)
elif self.args.sb_w == 'no':
sb_neg_margin = 0
elif self.args.sb_w == 'w1-0.5':
sb_neg_margin = 0.5*neg_score*(knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos"))
elif self.args.sb_w == 'w1-0.7':
sb_neg_margin = 0.7*neg_score*(knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos"))
elif self.args.sb_w == 'w1-0.2':
sb_neg_margin = 0.2*neg_score*(knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos"))
elif self.args.sb_w == 'w2':
sb_neg_margin = 1/math.e**(knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos")*(-5))
elif self.args.seq:
print("NEG1")
if not self.args.seq_w:
seq_neg_margin = knowledge_decoder.forward(ins_names, self.rel_embeddings.weight, neg, metric="seq")
elif self.args.seq_w == 'w1':
seq_neg_margin = neg_score*(knowledge_decoder.forward(ins_names, self.rel_embeddings.weight, neg, metric="seq"))
elif self.args.seq_w == 'no':
seq_neg_margin = 0
elif self.args.seq_w == 'w1-0.5':
seq_neg_margin = 0.5*neg_score*(knowledge_decoder.forward(ins_names, self.rel_embeddings.weight, neg, metric="seq"))
elif self.args.seq_w == 'w1-0.7':
seq_neg_margin = 0.7*neg_score*(knowledge_decoder.forward(ins_names, self.rel_embeddings.weight, neg, metric="seq"))
elif self.args.seq_w == 'w1-0.2':
seq_neg_margin = 0.2*neg_score*(knowledge_decoder.forward(ins_names, self.rel_embeddings.weight, neg, metric="seq"))
target = torch.ones(neg_score.size()).to(device)
if self.args.mytest:
if self.args.sbert:
loss = knowledge_decoder.loss(pos_score+sb_neg_margin, self.args.neg_scale*neg_score, target) * knowledge_decoder.alpha
elif self.args.seq:
loss = knowledge_decoder.loss(pos_score+seq_neg_margin, self.args.neg_scale*neg_score, target) * knowledge_decoder.alpha
else:
loss = knowledge_decoder.loss(pos_score, self.args.neg_scale*neg_score, target) * knowledge_decoder.alpha
else:
loss = knowledge_decoder.loss(pos_score, neg_score, target) * knowledge_decoder.alpha
else:
enh_emb = torch.cat([enh_emb, sbert_emb], 1)
print(enh_emb.shape)
pos_score = knowledge_decoder.forward(enh_emb, self.rel_embeddings.weight, pos)
neg_score = knowledge_decoder.forward(enh_emb, self.rel_embeddings.weight, neg)
if self.args.mytest:
if self.args.sbert:
print("NEG2")
if not self.args.sb_w:
sb_neg_margin = knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos")
elif self.args.sb_w == 'w1':
sb_neg_margin = neg_score*(knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos"))
elif self.args.sb_w == 'w1-new':
sb_neg_margin = neg_score*((knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos")+1)*0.5)
elif self.args.sb_w == 'no':
sb_neg_margin = 0
elif self.args.sb_w == 'w1-0.5':
sb_neg_margin = 0.5*neg_score*(knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos"))
elif self.args.sb_w == 'w1-0.7':
sb_neg_margin = 0.7*neg_score*(knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos"))
elif self.args.sb_w == 'w1-0.2':
sb_neg_margin = 0.2*neg_score*(knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos"))
elif self.args.sb_w == 'w2':
sb_neg_margin = 1/math.e**(knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos")*(-5))
elif self.args.seq:
print("NEG3")
if not self.args.seq_w:
seq_neg_margin = knowledge_decoder.forward(ins_names, self.rel_embeddings.weight, neg, metric="seq")
elif self.args.seq_w == 'w1':
seq_neg_margin = neg_score*(knowledge_decoder.forward(ins_names, self.rel_embeddings.weight, neg, metric="seq"))
elif self.args.seq_w == 'no':
seq_neg_margin = 0
elif self.args.seq_w == 'w1-0.5':
seq_neg_margin = 0.5*neg_score*(knowledge_decoder.forward(ins_names, self.rel_embeddings.weight, neg, metric="seq"))
elif self.args.seq_w == 'w1-0.7':
seq_neg_margin = 0.7*neg_score*(knowledge_decoder.forward(ins_names, self.rel_embeddings.weight, neg, metric="seq"))
elif self.args.seq_w == 'w1-0.2':
seq_neg_margin = 0.2*neg_score*(knowledge_decoder.forward(ins_names, self.rel_embeddings.weight, neg, metric="seq"))
target = torch.ones(neg_score.size()).to(device)
if self.args.mytest:
if self.args.sbert:
loss = knowledge_decoder.loss(pos_score+sb_neg_margin, self.args.neg_scale*neg_score, target) * knowledge_decoder.alpha
elif self.args.seq:
loss = knowledge_decoder.loss(pos_score+seq_neg_margin, self.args.neg_scale*neg_score, target) * knowledge_decoder.alpha
else:
loss = knowledge_decoder.loss(pos_score, self.args.neg_scale*neg_score, target) * knowledge_decoder.alpha
else:
loss = knowledge_decoder.loss(pos_score, neg_score, target) * knowledge_decoder.alpha
enh_emb1 = torch.cat([enh_emb1, sbert_emb], 1)
print(enh_emb1.shape)
pos_score = knowledge_decoder.forward(enh_emb1, self.rel_embeddings.weight, pos)
neg_score = knowledge_decoder.forward(enh_emb1, self.rel_embeddings.weight, neg)
if self.args.mytest:
if self.args.sbert:
print("NEG4")
if not self.args.sb_w:
sb_neg_margin = knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos")
elif self.args.sb_w == 'w1':
sb_neg_margin = neg_score*(knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos"))
elif self.args.sb_w == 'w1-new':
sb_neg_margin = neg_score*((knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos")+1)*0.5)
elif self.args.sb_w == 'no':
sb_neg_margin = 0
elif self.args.sb_w == 'w1-0.5':
sb_neg_margin = 0.5*neg_score*(knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos"))
elif self.args.sb_w == 'w1-0.7':
sb_neg_margin = 0.7*neg_score*(knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos"))
elif self.args.sb_w == 'w1-0.2':
sb_neg_margin = 0.2*neg_score*(knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos"))
elif self.args.sb_w == 'w2':
sb_neg_margin = 1/math.e**(knowledge_decoder.forward(sbert_emb, self.rel_embeddings.weight, neg, metric="cos")*(-5))
elif self.args.seq:
print("NEG5")
if not self.args.seq_w:
seq_neg_margin = knowledge_decoder.forward(ins_names, self.rel_embeddings.weight, neg, metric="seq")
elif self.args.seq_w == 'w1':
seq_neg_margin = neg_score*(knowledge_decoder.forward(ins_names, self.rel_embeddings.weight, neg, metric="seq"))
elif self.args.seq_w == 'no':
seq_neg_margin = 0
elif self.args.seq_w == 'w1-0.5':
seq_neg_margin = 0.5*neg_score*(knowledge_decoder.forward(ins_names, self.rel_embeddings.weight, neg, metric="seq"))
elif self.args.seq_w == 'w1-0.7':
seq_neg_margin = 0.7*neg_score*(knowledge_decoder.forward(ins_names, self.rel_embeddings.weight, neg, metric="seq"))