-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathHKO_EF.py
283 lines (241 loc) · 9.79 KB
/
HKO_EF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#!/usr/bin/evn python
# -*- coding: utf-8 -*-
# Copyright (c) 2017 - zihao.chen <zihao.chen@moji.com>
'''
Author: zihao.chen
Create Date: 2018-04-08
Modify Date: 2018-04-08
descirption: ""
'''
import torch
from torch import nn
from torch import optim
from torch.autograd import Variable
import numpy as np
import sys
import cv2
import os
import pickle
from forecaster import Forecaster
from encoder import Encoder
# sys.path.append('/home/meteo/zihao.chen/model_service/utils')
from data_transfrom import decode_radar_code, imgmap_tonumpy, encode_squs_code, imgmaps_tonumpy
input_num_seqs = 10
output_num_seqs = 10
hidden_size = 3
input_channels_img = 1
output_channels_img = 1
size_image = 240
max_epoch = 12
cuda_flag = False
kernel_size = 3
batch_size = 16
def train_by_stype(model_e, model_f, loss_e, loss_f, optimizer_e, optimizer_f, x_val, y_val):
model_e.init_h0()
for time in xrange(model_e.num_seqs):
h_next_e = model_e(x_val[time])
all_pre_data = []
# print type(model_e)
# print type(model_f)
model_f.set_h0(model_e)
for time in xrange(model_e.num_seqs):
pre_data, h_next = model_f(None)
# print h_next.size()
all_pre_data.append(pre_data)
# fx = model_f.forward(x_val)
output_f = 0
# print all_pre_data[0].requires_grad
# print y_val[0].requires_grad
optimizer_f.zero_grad()
for pre_id in range(len(all_pre_data)):
# print all_pre_data[pre_id].dtype()
output_f += loss_f.forward(all_pre_data[pre_id], y_val[pre_id])
output_f.backward(retain_graph=True)
optimizer_f.step()
all_e_rnn_h = [model_e.rnn3_3_h, model_e.rnn3_2_h, model_e.rnn3_1_h, model_e.rnn2_3_h, model_e.rnn2_2_h,
model_e.rnn2_1_h, model_e.rnn1_2_h, model_e.rnn1_1_h]
all_f_rnn_h = [model_f.rnn1_1_h, model_f.rnn1_2_h, model_f.rnn1_3_h, model_f.rnn2_1_h, model_f.rnn2_2_h,
model_f.rnn2_3_h, model_f.rnn3_1_h, model_f.rnn3_2_h]
output_e = 0
optimizer_e.zero_grad()
for i in range(len(all_e_rnn_h)):
# all_f_rnn_h[0].requires_grad = False
output_e += loss_e.forward(all_e_rnn_h[i],all_f_rnn_h[i].detach())
output_e.backward()
optimizer_e.step()
# if pre_id == 1:
# print 'loss 1:',output
return output_f.cuda().data[0], all_pre_data
# def train(model_e,model_f, loss, optimizer, x_val, y_val):
# # x = Variable(x_val.cuda(), requires_grad=False)
# # y = Variable(y_val.cuda(), requires_grad=False)
# optimizer.zero_grad()
# fx = model.forward(x_val)
# output = 0
# # t_y = fx.cpu().data.numpy().argmax(axis=1)
# # acc = 1. * np.mean(t_y == y_val.numpy())
# for pre_id in range(len(fx)):
# output += loss.forward(fx[pre_id], y_val[pre_id]).data.cpu()
# # if pre_id == 1:
# # print 'loss 1:',output
# output.backward()
# optimizer.step()
#
# return output.cuda().data[0], fx
def verify(model_e, model_f, loss, x_val, y_val):
model_e.init_h0()
for time in xrange(model_e.num_seqs):
h_next = model_e(x_val[time])
fx = []
model_f.set_h0(model_e)
for time in xrange(model_e.num_seqs):
pre_data, h_next = model_f(None)
# print h_next.size()
fx.append(pre_data)
output = 0
for pre_id in range(len(fx)):
output += loss.forward(fx[pre_id], y_val[pre_id])
return output.cuda().data[0]
def load_data(code_list):
test_arr = None
train_arr = None
train_imgs_maps = {}
test_imgs_maps = {}
for code in code_list:
file_f = open('data_%s.pkl' % code, 'rb')
map_l = pickle.load(file_f)
file_f.close()
if test_arr is None:
test_arr = map_l['test_arr']
train_arr = map_l['train_arr']
else:
test_arr = np.concatenate((test_arr, map_l['test_arr']), axis=0)
train_arr = np.concatenate((train_arr, map_l['train_arr']), axis=0)
train_imgs_maps[code] = map_l['train_imgs_map']
test_imgs_maps[code] = map_l['test_imgs_map']
return train_arr, test_arr, train_imgs_maps, test_imgs_maps
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = 0.001
lr = lr * (0.3 ** (epoch // 4))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def touch_dir(path):
result = False
try:
path = path.strip().rstrip("\\")
if not os.path.exists(path):
os.makedirs(path)
result = True
else:
result = True
except:
result = False
return result
def test(input_channels_img, output_channels_img, size_image, max_epoch, model_e, model_f, cuda_test):
# input_image = np.ones((input_num_seqs,batch_size,input_channels_img,size_image,size_image))
#
# for i in range(input_num_seqs):
# input_image[i,...] = i*1+1
# # input_image = input_image *10
# input_image = torch.from_numpy(input_image).float()
# input_gru = Variable(input_image.cuda())
#
# target_image = np.ones((output_num_seqs,batch_size,output_channels_img,size_image,size_image))
# for i in range(output_num_seqs):
# target_image[i,...] = i*1+1*(input_num_seqs)+1
# print target_image[i,0,0,0:3,0:3]
# # target_image = target_image *10
# target_image = torch.from_numpy(target_image).float()
# target_gru = Variable(target_image.cuda())
params = model_e.state_dict()
print params.keys()
print params['conv1_act.0.weight']
criterion_e = nn.MSELoss()
criterion_e = criterion_e.cuda()
optimizer_e = optim.SGD(model_e.parameters(), lr=(0.001), momentum=0.9, weight_decay=0.005)
criterion_f = nn.MSELoss()
criterion_f = criterion_f.cuda()
optimizer_f = optim.SGD(model_f.parameters(), lr=(0.001), momentum=0.9, weight_decay=0.005)
for i in range(max_epoch):
adjust_learning_rate(optimizer_e, i)
adjust_learning_rate(optimizer_f, i)
print 'epoch :', i
print train_arr.shape
nnn = range(train_arr.shape[0])
np.random.shuffle(nnn)
train_arr_b = train_arr[nnn]
batch_num = train_arr_b.shape[0] // batch_size
print batch_num
for j in range(batch_num):
batch_img = imgmaps_tonumpy(train_arr_b[j * batch_size:(j + 1) * batch_size, ...], train_imgs_maps)
input_image = batch_img[:10, ...] / 255.
target_image = batch_img[10:, ...] / 255.
input_image = torch.from_numpy(input_image).float()
input_gru = Variable(input_image.cuda())
target_image = torch.from_numpy(target_image).float()
target_gru = Variable(target_image.cuda())
error, pre_list = train_by_stype(model_e, model_f, criterion_e, criterion_f, optimizer_e, optimizer_f,
input_gru, target_gru)
print j, ' : ', error
# print model.encoder.conv1_act
params = model_e.state_dict()
print params.keys()
print params['conv1_act.0.weight']
batch_num = test_arr.shape[0] // batch_size
for j in range(batch_num):
batch_img = imgmaps_tonumpy(test_arr[j * batch_size:(j + 1) * batch_size, ...], test_imgs_maps)
input_image = batch_img[:10, ...] / 255.
target_image = batch_img[10:, ...] / 255.
input_image = torch.from_numpy(input_image).float()
input_gru = Variable(input_image.cuda())
target_image = torch.from_numpy(target_image).float()
target_gru = Variable(target_image.cuda())
error = verify(model_e,model_f, criterion_f, input_gru, target_gru)
print j, ' : ', error
for i in range(test_arr.shape[0]):
temp_path = test_arr[i, 0, 0]
start_i = temp_path.find('201')
time_str = temp_path[start_i:start_i + 12]
print time_str
start_i = temp_path.find('AZ')
radar_code = temp_path[start_i:start_i + 6]
save_path = '/home/meteo/zihao.chen/model_service/imgs/%s/%s/' % (radar_code, time_str)
touch_dir(save_path)
temp_arr = test_arr[i]
temp_arr = temp_arr[np.newaxis, ...]
batch_img = imgmaps_tonumpy(temp_arr, test_imgs_maps)
input_image = batch_img[:10, ...]
target_image = batch_img[10:, ...]
input_image_t = torch.from_numpy(input_image / 255.).float()
input_gru = Variable(input_image_t.cuda())
# fx = model.forward(input_gru)
model_e.init_h0()
for time in xrange(model_e.num_seqs):
h_next = model_e(input_gru[time])
fx = []
model_f.set_h0(model_e)
for time in xrange(model_e.num_seqs):
pre_data, h_next = model_f(None)
# print h_next.size()
fx.append(pre_data)
for pre_id in range(len(fx)):
temp_xx = fx[pre_id].cpu().data.numpy()
tmp_img = temp_xx[0, 0, ...]
tmp_img = tmp_img * 255.
true_img = target_image[pre_id, 0, 0, ...]
encode_img = input_image[pre_id, 0, 0, ...]
cv2.imwrite(os.path.join(save_path, 'a_%s.png' % pre_id), encode_img)
cv2.imwrite(os.path.join(save_path, 'c_%s.png' % pre_id), tmp_img)
cv2.imwrite(os.path.join(save_path, 'b_%s.png' % pre_id), true_img)
# for pre_data in pre_list:
# temp = pre_data.cpu().data.numpy()
# print temp.mean()
train_arr, test_arr, train_imgs_maps, test_imgs_maps = load_data(['AZ9010','AZ9200'])
if __name__ == '__main__':
# m = HKOModel(inplanes=1, input_num_seqs=input_num_seqs, output_num_seqs=output_num_seqs)
m_e = Encoder(inplanes=input_channels_img, num_seqs=input_num_seqs)
m_e = m_e.cuda()
m_f = Forecaster(num_seqs=output_num_seqs)
m_f = m_f.cuda()
test(input_channels_img, output_channels_img, size_image, max_epoch, model_e=m_e, model_f=m_f, cuda_test=cuda_flag)