@@ -13,7 +13,7 @@ print(pyiqa.list_models())
13
13
| TOPIQ | ` topiq_fr ` , ` topiq_fr-pipal ` | Proposed in [ this paper] ( https://arxiv.org/abs/2308.03060 ) |
14
14
| AHIQ | ` ahiq ` |
15
15
| PieAPP | ` pieapp ` |
16
- | LPIPS | ` lpips ` , ` lpips-vgg ` , ` stlpips ` , ` stlpips-vgg ` |
16
+ | LPIPS | ` lpips ` , ` lpips-vgg ` , ` stlpips ` , ` stlpips-vgg ` , ` lpips+ ` , ` lpips-vgg+ ` |
17
17
| DISTS | ` dists ` |
18
18
| WaDIQaM | | * No pretrain models* |
19
19
| CKDN<sup >[ 1] ( #fn1 ) </sup > | ` ckdn ` |
@@ -30,13 +30,15 @@ print(pyiqa.list_models())
30
30
31
31
| NR Method | Model names | Description |
32
32
| ---------------------------- | ------------------------ | -------------------------------------------------------------------------------------|
33
- | ARNIQA | ` arniqa ` , ` arniqa-live ` , ` arniqa-csiq ` , ` arniqa-tid ` , ` arniqa-kadid ` , ` arniqa-koniq ` , ` arniqa-clive ` , ` arniqa-flive ` , ` arniqa-spaq ` | [ ARNIQA] ( https://arxiv.org/abs/2310.14918 ) with different datasets, ` koniq ` by default |
33
+ | Q-Align | ` qalign ` (with quality[ default] , aesthetic options) | Large vision-language models |
34
+ | LIQE | ` liqe ` , ` liqe_mix ` | CLIP based method |
35
+ | ARNIQA | ` arniqa ` , ` arniqa-live ` , ` arniqa-csiq ` , ` arniqa-tid ` , ` arniqa-kadid ` , ` arniqa-clive ` , ` arniqa-flive ` , ` arniqa-spaq ` | [ ARNIQA] ( https://arxiv.org/abs/2310.14918 ) with different datasets, ` koniq ` by default |
34
36
| TOPIQ | ` topiq_nr ` , ` topiq_nr-flive ` , ` topiq_nr-spaq ` | [ TOPIQ] ( https://arxiv.org/abs/2308.03060 ) with different datasets, ` koniq ` by default |
35
- | TReS | ` tres ` , ` tres-koniq ` , ` tres- flive` | TReS with different datasets, ` koniq ` by default |
37
+ | TReS | ` tres ` , ` tres-flive ` | TReS with different datasets, ` koniq ` by default |
36
38
| FID | ` fid ` | Statistic distance between two datasets |
37
39
| CLIPIQA(+) | ` clipiqa ` , ` clipiqa+ ` , ` clipiqa+_vitL14_512 ` ,` clipiqa+_rn50_512 ` | CLIPIQA(+) with different backbone, RN50 by default |
38
- | MANIQA | ` maniqa ` , ` maniqa-kadid ` , ` maniqa-koniq ` , ` maniqa- pipal` | MUSIQ with different datasets, ` koniq ` by default |
39
- | MUSIQ | ` musiq ` , ` musiq-koniq ` , ` musiq- spaq` , ` musiq-paq2piq ` , ` musiq-ava ` | MUSIQ with different datasets, ` koniq ` by default |
40
+ | MANIQA | ` maniqa ` , ` maniqa-kadid ` , ` maniqa-pipal ` | MUSIQ with different datasets, ` koniq ` by default |
41
+ | MUSIQ | ` musiq ` , ` musiq-spaq ` , ` musiq-paq2piq ` , ` musiq-ava ` | MUSIQ with different datasets, ` koniq ` by default |
40
42
| DBCNN | ` dbcnn ` |
41
43
| PaQ-2-PiQ | ` paq2piq ` |
42
44
| HyperIQA | ` hyperiqa ` |
@@ -48,6 +50,7 @@ print(pyiqa.list_models())
48
50
| BRISQUE | ` brisque ` | No backward |
49
51
| ILNIQE | ` ilniqe ` | No backward |
50
52
| NIQE | ` niqe ` | No backward |
53
+ | PIQE | ` piqe ` | No backward |
51
54
<!-- </tr>
52
55
</table> -->
53
56
@@ -61,25 +64,11 @@ print(pyiqa.list_models())
61
64
| Face IQA | ` topiq_nr-face ` | TOPIQ model trained with face IQA dataset (GFIQA) |
62
65
| Underwater IQA | ` uranker ` | A ranking-based underwater image quality assessment (UIQA) method, AAAI2023, [ Arxiv] ( https://arxiv.org/abs/2208.06857 ) , [ Github] ( https://github.com/RQ-Wu/UnderwaterRanker ) |
63
66
64
- ## Outputs of Different Metrics
67
+ ## Metric Output Score Range
65
68
** Note: ` ~ ` means that the corresponding numeric bound is typical value and not mathematically guaranteed**
66
69
67
- | model | lower better ? | min | max | DATE | Link |
68
- | -------- | -------------- | --- | ------- | ---- | --------------------------------------------------------------------------------------------------------------------------------------------------------- |
69
- | clipiqa | False | 0 | 1 | 2022 | https://arxiv.org/abs/2207.12396 |
70
- | maniqa | False | 0 | | 2022 | https://arxiv.org/abs/2204.08958 |
71
- | hyperiqa | False | 0 | 1 | 2020 | [ pdf] ( https://openaccess.thecvf.com/content_CVPR_2020/papers/Su_Blindly_Assess_Image_Quality_in_the_Wild_Guided_by_a_CVPR_2020_paper.pdf ) |
72
- | cnniqa | False | | | 2014 | [ pdf] ( https://openaccess.thecvf.com/content_cvpr_2014/papers/Kang_Convolutional_Neural_Networks_2014_CVPR_paper.pdf ) |
73
- | tres | False | | | 2022 | https://github.com/isalirezag/TReS |
74
- | musiq | False | ~ 0 | ~ 100 | 2021 | https://arxiv.org/abs/2108.05997 |
75
- | musiq-ava | False | ~ 0 | ~ 10 | 2021 | https://arxiv.org/abs/2108.05997 |
76
- | musiq-koniq | False | ~ 0 | ~ 100 | 2021 | https://arxiv.org/abs/2108.05997 |
77
- | musiq | False | | | 2021 | https://arxiv.org/abs/2108.05997 |
78
- | paq2piq | False | | | 2020 | [ pdf] ( https://openaccess.thecvf.com/content_CVPR_2020/papers/Ying_From_Patches_to_Pictures_PaQ-2-PiQ_Mapping_the_Perceptual_Space_of_CVPR_2020_paper.pdf ) |
79
- | dbcnn | False | | | 2019 | https://arxiv.org/bas/1907.02665 |
80
- | brisque | True | | | 2012 | [ pdf] ( https://live.ece.utexas.edu/publications/2012/TIP%20BRISQUE.pdf ) |
81
- | pi | True | | | 2018 | https://arxiv.org/abs/1809.07517 |
82
- | nima | False | | | 2018 | https://arxiv.org/abs/1709.05424 |
83
- | nrqm | False | | | 2016 | https://arxiv.org/abs/1612.05890 |
84
- | ilniqe | True | 0 | | 2015 | [ pdf] ( http://www4.comp.polyu.edu.hk/~cslzhang/paper/IL-NIQE.pdf ) |
85
- | niqe | True | 0 | | 2012 | [ pdf] ( https://live.ece.utexas.edu/publications/2013/mittal2013.pdf ) |
70
+ You can now access the ** rough** output range of each metric like this:
71
+ ```
72
+ metric = pyiqa.create_metric('lpips')
73
+ print(metric.score_range)
74
+ ```
0 commit comments