forked from apache/airflow
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexample_automl_tables.py
319 lines (277 loc) · 10.1 KB
/
example_automl_tables.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that uses Google AutoML services.
"""
from __future__ import annotations
import os
from copy import deepcopy
from datetime import datetime
from typing import cast
from airflow import models
from airflow.models.xcom_arg import XComArg
from airflow.providers.google.cloud.hooks.automl import CloudAutoMLHook
from airflow.providers.google.cloud.operators.automl import (
AutoMLBatchPredictOperator,
AutoMLCreateDatasetOperator,
AutoMLDeleteDatasetOperator,
AutoMLDeleteModelOperator,
AutoMLDeployModelOperator,
AutoMLGetModelOperator,
AutoMLImportDataOperator,
AutoMLListDatasetOperator,
AutoMLPredictOperator,
AutoMLTablesListColumnSpecsOperator,
AutoMLTablesListTableSpecsOperator,
AutoMLTablesUpdateDatasetOperator,
AutoMLTrainModelOperator,
)
START_DATE = datetime(2021, 1, 1)
GCP_PROJECT_ID = os.environ.get("GCP_PROJECT_ID", "your-project-id")
GCP_AUTOML_LOCATION = os.environ.get("GCP_AUTOML_LOCATION", "us-central1")
GCP_AUTOML_DATASET_BUCKET = os.environ.get(
"GCP_AUTOML_DATASET_BUCKET", "gs://INVALID BUCKET NAME/bank-marketing.csv"
)
TARGET = os.environ.get("GCP_AUTOML_TARGET", "Deposit")
# Example values
MODEL_ID = "TBL123456"
DATASET_ID = "TBL123456"
# Example model
MODEL = {
"display_name": "auto_model_1",
"dataset_id": DATASET_ID,
"tables_model_metadata": {"train_budget_milli_node_hours": 1000},
}
# Example dataset
DATASET = {
"display_name": "test_set",
"tables_dataset_metadata": {"target_column_spec_id": ""},
}
IMPORT_INPUT_CONFIG = {"gcs_source": {"input_uris": [GCP_AUTOML_DATASET_BUCKET]}}
extract_object_id = CloudAutoMLHook.extract_object_id
def get_target_column_spec(columns_specs: list[dict], column_name: str) -> str:
"""
Using column name returns spec of the column.
"""
for column in columns_specs:
if column["display_name"] == column_name:
return extract_object_id(column)
raise Exception(f"Unknown target column: {column_name}")
# Example DAG to create dataset, train model_id and deploy it.
with models.DAG(
"example_create_and_deploy",
start_date=START_DATE,
catchup=False,
user_defined_macros={
"get_target_column_spec": get_target_column_spec,
"target": TARGET,
"extract_object_id": extract_object_id,
},
tags=['example'],
) as create_deploy_dag:
# [START howto_operator_automl_create_dataset]
create_dataset_task = AutoMLCreateDatasetOperator(
task_id="create_dataset_task",
dataset=DATASET,
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
dataset_id = cast(str, XComArg(create_dataset_task, key='dataset_id'))
# [END howto_operator_automl_create_dataset]
MODEL["dataset_id"] = dataset_id
# [START howto_operator_automl_import_data]
import_dataset_task = AutoMLImportDataOperator(
task_id="import_dataset_task",
dataset_id=dataset_id,
location=GCP_AUTOML_LOCATION,
input_config=IMPORT_INPUT_CONFIG,
)
# [END howto_operator_automl_import_data]
# [START howto_operator_automl_specs]
list_tables_spec_task = AutoMLTablesListTableSpecsOperator(
task_id="list_tables_spec_task",
dataset_id=dataset_id,
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
# [END howto_operator_automl_specs]
# [START howto_operator_automl_column_specs]
list_columns_spec_task = AutoMLTablesListColumnSpecsOperator(
task_id="list_columns_spec_task",
dataset_id=dataset_id,
table_spec_id="{{ extract_object_id(task_instance.xcom_pull('list_tables_spec_task')[0]) }}",
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
# [END howto_operator_automl_column_specs]
# [START howto_operator_automl_update_dataset]
update = deepcopy(DATASET)
update["name"] = '{{ task_instance.xcom_pull("create_dataset_task")["name"] }}'
update["tables_dataset_metadata"][ # type: ignore
"target_column_spec_id"
] = "{{ get_target_column_spec(task_instance.xcom_pull('list_columns_spec_task'), target) }}"
update_dataset_task = AutoMLTablesUpdateDatasetOperator(
task_id="update_dataset_task",
dataset=update,
location=GCP_AUTOML_LOCATION,
)
# [END howto_operator_automl_update_dataset]
# [START howto_operator_automl_create_model]
create_model_task = AutoMLTrainModelOperator(
task_id="create_model_task",
model=MODEL,
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
model_id = cast(str, XComArg(create_model_task, key='model_id'))
# [END howto_operator_automl_create_model]
# [START howto_operator_automl_delete_model]
delete_model_task = AutoMLDeleteModelOperator(
task_id="delete_model_task",
model_id=model_id,
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
# [END howto_operator_automl_delete_model]
delete_datasets_task = AutoMLDeleteDatasetOperator(
task_id="delete_datasets_task",
dataset_id=dataset_id,
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
(
import_dataset_task
>> list_tables_spec_task
>> list_columns_spec_task
>> update_dataset_task
>> create_model_task
)
delete_model_task >> delete_datasets_task
# Task dependencies created via `XComArgs`:
# create_dataset_task >> import_dataset_task
# create_dataset_task >> list_tables_spec_task
# create_dataset_task >> list_columns_spec_task
# create_dataset_task >> create_model_task
# create_model_task >> delete_model_task
# create_dataset_task >> delete_datasets_task
# Example DAG for AutoML datasets operations
with models.DAG(
"example_automl_dataset",
start_date=START_DATE,
catchup=False,
user_defined_macros={"extract_object_id": extract_object_id},
) as example_dag:
create_dataset_task2 = AutoMLCreateDatasetOperator(
task_id="create_dataset_task",
dataset=DATASET,
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
dataset_id = cast(str, XComArg(create_dataset_task2, key='dataset_id'))
import_dataset_task = AutoMLImportDataOperator(
task_id="import_dataset_task",
dataset_id=dataset_id,
location=GCP_AUTOML_LOCATION,
input_config=IMPORT_INPUT_CONFIG,
)
list_tables_spec_task = AutoMLTablesListTableSpecsOperator(
task_id="list_tables_spec_task",
dataset_id=dataset_id,
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
list_columns_spec_task = AutoMLTablesListColumnSpecsOperator(
task_id="list_columns_spec_task",
dataset_id=dataset_id,
table_spec_id="{{ extract_object_id(task_instance.xcom_pull('list_tables_spec_task')[0]) }}",
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
# [START howto_operator_list_dataset]
list_datasets_task = AutoMLListDatasetOperator(
task_id="list_datasets_task",
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
# [END howto_operator_list_dataset]
# [START howto_operator_delete_dataset]
delete_datasets_task = AutoMLDeleteDatasetOperator(
task_id="delete_datasets_task",
dataset_id="{{ task_instance.xcom_pull('list_datasets_task', key='dataset_id_list') | list }}",
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
# [END howto_operator_delete_dataset]
(
import_dataset_task
>> list_tables_spec_task
>> list_columns_spec_task
>> list_datasets_task
>> delete_datasets_task
)
# Task dependencies created via `XComArgs`:
# create_dataset_task >> import_dataset_task
# create_dataset_task >> list_tables_spec_task
# create_dataset_task >> list_columns_spec_task
with models.DAG(
"example_gcp_get_deploy",
start_date=START_DATE,
catchup=False,
tags=["example"],
) as get_deploy_dag:
# [START howto_operator_get_model]
get_model_task = AutoMLGetModelOperator(
task_id="get_model_task",
model_id=MODEL_ID,
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
# [END howto_operator_get_model]
# [START howto_operator_deploy_model]
deploy_model_task = AutoMLDeployModelOperator(
task_id="deploy_model_task",
model_id=MODEL_ID,
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
# [END howto_operator_deploy_model]
with models.DAG(
"example_gcp_predict",
start_date=START_DATE,
catchup=False,
tags=["example"],
) as predict_dag:
# [START howto_operator_prediction]
predict_task = AutoMLPredictOperator(
task_id="predict_task",
model_id=MODEL_ID,
payload={}, # Add your own payload, the used model_id must be deployed
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
# [END howto_operator_prediction]
# [START howto_operator_batch_prediction]
batch_predict_task = AutoMLBatchPredictOperator(
task_id="batch_predict_task",
model_id=MODEL_ID,
input_config={}, # Add your config
output_config={}, # Add your config
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
# [END howto_operator_batch_prediction]