generated from carefree0910/carefree-client-template
-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathinterface.py
392 lines (285 loc) · 10.5 KB
/
interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import os
import json
import yaml
import torch
import cflearn
import logging
import datetime
import logging.config
from enum import Enum
from typing import Any
from typing import Dict
from typing import List
from typing import Type
from fastapi import FastAPI
from fastapi import Response
from pydantic import BaseModel
from pkg_resources import get_distribution
from cftool.array import tensor_dict_type
from fastapi.openapi.utils import get_openapi
from fastapi.middleware.cors import CORSMiddleware
from cfclient.models import *
from cfclient.core import HttpClient
from cfclient.core import TritonClient
from cfclient.utils import get_err_msg
from cfclient.utils import get_responses
from cfclient.utils import run_algorithm
from cfclient.utils import get_image_response_kwargs
from cfcreator import *
app = FastAPI()
root = os.path.dirname(__file__)
constants = dict(
triton_host=None,
triton_port=8000,
model_root=os.path.join(root, "models"),
token_root=os.path.join(root, "tokens"),
)
origins = [
"*",
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# logging
logging_root = os.path.join(root, "logs")
os.makedirs(logging_root, exist_ok=True)
with open(os.path.join(root, "config.yml")) as f:
now = datetime.datetime.now()
timestamp = now.strftime("%Y-%m-%d_%H-%M-%S-%f")
log_path = os.path.join(logging_root, f"{timestamp}.log")
config = yaml.load(f, Loader=yaml.FullLoader)
config["handlers"]["file"]["filename"] = log_path
logging.config.dictConfig(config)
excluded_endpoints = {"/health", "/redoc", "/docs", "/openapi.json"}
class EndpointFilter(logging.Filter):
def filter(self, record: logging.LogRecord) -> bool:
if not record.args:
return False
if len(record.args) < 3:
return False
if record.args[2] in excluded_endpoints:
return False
return True
logging.getLogger("uvicorn.access").addFilter(EndpointFilter())
# clients
## http client
http_client = HttpClient()
## triton client
triton_host = constants["triton_host"]
if triton_host is None:
triton_client = None
else:
triton_client = TritonClient(url=f"{triton_host}:{constants['triton_port']}")
## collect
clients = dict(
http=http_client,
triton=triton_client,
)
# algorithms
all_algorithms: Dict[str, AlgorithmBase] = {
k: v(clients) for k, v in algorithms.items()
}
# schema
DOCS_TITLE = "FastAPI client"
DOCS_VERSION = get_distribution("carefree-client").version
DOCS_DESCRIPTION = (
"This is a client framework based on FastAPI. "
"It also supports interacting with Triton Inference Server."
)
def carefree_schema() -> Dict[str, Any]:
schema = get_openapi(
title=DOCS_TITLE,
version=DOCS_VERSION,
description=DOCS_DESCRIPTION,
contact={
"name": "Get Help with this API",
"email": "syameimaru.saki@gmail.com",
},
routes=app.routes,
)
app.openapi_schema = schema
return app.openapi_schema
# health check
class HealthStatus(Enum):
ALIVE = "alive"
class HealthCheckResponse(BaseModel):
status: HealthStatus
@app.get("/health", response_model=HealthCheckResponse)
async def health_check() -> HealthCheckResponse:
return {"status": "alive"}
# demo
@app.post(demo_hello_endpoint, responses=get_responses(HelloResponse))
async def hello(data: HelloModel) -> HelloResponse:
return await run_algorithm(all_algorithms["demo.hello"], data)
# get prompt
@app.post("/translate", responses=get_responses(GetPromptResponse))
@app.post("/get_prompt", responses=get_responses(GetPromptResponse))
def get_prompt(data: GetPromptModel) -> GetPromptResponse:
return GetPromptResponse(text=data.text, success=True, reason="")
# switch local checkpoint
class ModelRootResponse(BaseModel):
root: str
class SwitchCheckpointModel(BaseModel):
key: str
model: str
class SwitchCheckpointResponse(BaseModel):
success: bool
reason: str
class AvailableVersions(BaseModel):
versions: List[str]
class AvailableModels(BaseModel):
models: List[str]
class SwitchCheckpointRootModel(BaseModel):
root: str
class SwitchCheckpointRootResponse(BaseModel):
success: bool
reason: str
class ResetCheckpointModel(BaseModel):
version: str
class ResetCheckpointResponse(BaseModel):
success: bool
reason: str
def _get_available_local_models(root: str) -> List[str]:
if not os.path.isdir(root):
return []
return list(
filter(
lambda file: file.endswith(".pt") or file.endswith(".ckpt"),
os.listdir(root),
)
)
@app.post("/model_root", responses=get_responses(GetPromptResponse))
def get_model_root() -> ModelRootResponse:
return ModelRootResponse(root=constants["model_root"])
@app.post("/available_versions", responses=get_responses(GetPromptResponse))
def get_available_api_versions() -> AvailableVersions:
return AvailableVersions(versions=available_apis())
@app.post("/available_models", responses=get_responses(GetPromptResponse))
def get_available_local_models() -> AvailableModels:
return AvailableModels(models=_get_available_local_models(constants["model_root"]))
@app.post("/switch", responses=get_responses(SwitchCheckpointResponse))
def switch_checkpoint(data: SwitchCheckpointModel) -> SwitchCheckpointResponse:
api = get_api(data.key)
if api is None:
return SwitchCheckpointResponse(
success=False,
reason=f"'{data.key}' is not a valid key, available keys are: {', '.join(available_apis())}",
)
model_path = os.path.join(constants["model_root"], data.model)
if not os.path.isfile(model_path):
return SwitchCheckpointResponse(
success=False,
reason=f"cannot find '{data.model}' under '{constants['model_root']}'",
)
try:
cflearn.scripts.sd.convert(model_path, api, load=True)
return SwitchCheckpointResponse(success=True, reason="")
except Exception as err:
logging.exception(err)
return SwitchCheckpointResponse(success=False, reason=get_err_msg(err))
@app.post("/reset", responses=get_responses(ResetCheckpointResponse))
def reset_checkpoint(data: ResetCheckpointModel) -> ResetCheckpointResponse:
err_msg = f"'{data.version}' is not a valid version, available versions are: {', '.join(available_apis())}"
current = get_api(data.version)
if current is None:
return ResetCheckpointResponse(success=False, reason=err_msg)
init_fn = get_init_fn(data.version)
if init_fn is None:
return ResetCheckpointResponse(success=False, reason=err_msg)
try:
with init_fn("cpu").load_context() as wrapper:
od = wrapper.state_dict()
cflearn.scripts.sd.inject(od, current)
return ResetCheckpointResponse(success=True, reason="")
except Exception as err:
return ResetCheckpointResponse(success=False, reason=get_err_msg(err))
@app.post("/switch_root", responses=get_responses(SwitchCheckpointRootResponse))
def switch_root(data: SwitchCheckpointRootModel) -> SwitchCheckpointRootResponse:
if not _get_available_local_models(data.root):
return SwitchCheckpointRootResponse(
success=False,
reason=f"cannot find any checkpoints under '{data.root}'",
)
constants["model_root"] = data.root
return SwitchCheckpointRootResponse(success=True, reason="")
# inject custom tokens
custom_embeddings: tensor_dict_type = {}
def _inject_custom_tokens(root: str) -> tensor_dict_type:
local_customs: tensor_dict_type = {}
if not os.path.isdir(root):
return local_customs
for file in os.listdir(root):
try:
path = os.path.join(root, file)
d = torch.load(path, map_location="cpu")
local_customs.update({k: v.tolist() for k, v in d.items()})
except:
continue
if local_customs:
print(f"> Following tokens are loaded: {', '.join(sorted(local_customs))}")
custom_embeddings.update(local_customs)
return local_customs
class InjectCustomTokenModel(BaseModel):
root: str
class InjectCustomTokenResponse(BaseModel):
success: bool
reason: str
@app.post("/inject_tokens", responses=get_responses(InjectCustomTokenResponse))
def inject_custom_tokens(data: InjectCustomTokenModel) -> InjectCustomTokenResponse:
if not _inject_custom_tokens(data.root):
return InjectCustomTokenResponse(
success=False,
reason=f"cannot find any tokens under '{data.root}'",
)
return InjectCustomTokenResponse(success=True, reason="")
# meta
env_opt_json = os.environ.get(OPT_ENV_KEY)
if env_opt_json is not None:
OPT.update(json.loads(env_opt_json))
focus = OPT.get("focus", "all")
registered_algorithms = set()
def register_endpoint(endpoint: str, data_model: Type[BaseModel]) -> None:
name = endpoint[1:].replace("/", "_")
algorithm_name = endpoint2algorithm(endpoint)
algorithm = all_algorithms[algorithm_name]
registered_algorithms.add(algorithm_name)
@app.post(endpoint, **get_image_response_kwargs(), name=name)
async def _(data: data_model) -> Response:
if isinstance(data, DiffusionModel) and not data.custom_embeddings:
data.custom_embeddings = custom_embeddings
return await run_algorithm(algorithm, data)
# txt2img
if focus != "sd.inpainting":
register_endpoint(txt2img_sd_endpoint, Txt2ImgSDModel)
if focus not in ("sd.base", "sd.anime"):
register_endpoint(txt2img_sd_inpainting_endpoint, Txt2ImgSDInpaintingModel)
register_endpoint(txt2img_sd_outpainting_endpoint, Txt2ImgSDOutpaintingModel)
# img2img
if focus != "sd.inpainting":
register_endpoint(img2img_sd_endpoint, Img2ImgSDModel)
if focus == "all":
register_endpoint(img2img_sr_endpoint, Img2ImgSRModel)
register_endpoint(img2img_inpainting_endpoint, Img2ImgInpaintingModel)
register_endpoint(img2img_semantic2img_endpoint, Img2ImgSemantic2ImgModel)
# events
@app.on_event("startup")
async def startup() -> None:
http_client.start()
OPT["use_cos"] = False
for k, v in all_algorithms.items():
if k in registered_algorithms:
v.initialize()
_inject_custom_tokens(constants["token_root"])
print("> Server is Ready!")
@app.on_event("shutdown")
async def shutdown() -> None:
await http_client.stop()
# schema
app.openapi = carefree_schema
if __name__ == "__main__":
import uvicorn
uvicorn.run("interface:app", host="0.0.0.0", port=8989, reload=True)