You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
*[Kubeflow/Katib: Kubernetes-based system for hyperparameter tuning and neural architecture search.](https://github.com/kubeflow/katib)
@@ -96,7 +96,6 @@ Furthermore, I recommend you to use RDB storage backend for following purposes.
96
96
* Continue from where we stopped in the previous optimizations.
97
97
* Scale studies to tens of workers that connecting to the same RDB storage.
98
98
* Check optimization results via built-in dashboard.
99
-
* Visualize parameters on Jupyter notebook using Optuna.
100
99
101
100
### Advanced usage
102
101
@@ -205,6 +204,10 @@ References:
205
204
*[8][Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt, Benjamin Recht, and Ameet Talwalkar. Massively parallel hyperparameter tuning. arXiv preprint arXiv:1810.05934, 2018.](https://arxiv.org/abs/1810.05934)
206
205
*[9][J. Snoek, H. Larochelle, and R. Adams. Practical Bayesian optimization of machine learning algorithms. In Advances in Neural Information Processing Systems 25, pages 2960–2968, 2012.](https://arxiv.org/abs/1206.2944)
207
206
207
+
Presentations:
208
+
209
+
*:jp:[Goptuna Distributed Bayesian Optimization Framework at Go Conference 2019 Autumn](https://www.slideshare.net/c-bata/goptuna-distributed-bayesian-optimization-framework-at-go-conference-2019-autumn-187538495)
210
+
208
211
Blog posts:
209
212
210
213
*[Practical bayesian optimization using Goptuna](https://medium.com/@c_bata_/practical-bayesian-optimization-in-go-using-goptuna-edf97195fcb5).
0 commit comments