-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
126 lines (94 loc) · 3.09 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# import matplotlib.pyplot as plt
from random import seed
import numpy as np
import torch
from torch import optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
import settings
from DefaultDataset import DefaultDataset
from data_load import load_parts, load_elec
from model import NegBinNet, GaussianNet
def save_model(filename, model):
state = {'model': model}
torch.save(state, filename)
def load_model(filename):
return torch.load(filename)['model']
def rmse(z_true, z_pred):
return float(torch.sqrt(torch.mean(torch.pow(z_pred - z_true, 2))))
def rmse_mean(enc_x, enc_z, dec_x, dec_v):
Z = []
for i in range(50):
z = model.forward_infer(enc_x, enc_z, dec_x, dec_v)
z = z.cpu().detach().numpy()
z = np.expand_dims(z, axis=0)
Z.append(z)
Z = np.concatenate(Z)
Z = np.mean(Z, axis=0)
return rmse(dec_z, Z)
# def plot(results):
# plt.plot(range(len(results)), results)
# plt.show()
if __name__ == '__main__':
np.random.seed(101)
torch.manual_seed(101)
seed(101)
_, data = load_elec()
x = data['x']
z = data['z']
v = data['v']
p = data['p']
enc_x = data['enc_x']
enc_z = data['enc_z']
dec_x = data['dec_x']
dec_z = data['dec_z']
dec_v = data['dec_v']
dataset = DefaultDataset(x, z, v, p)
enc_x = torch.from_numpy(enc_x).float()
enc_z = torch.from_numpy(enc_z).float()
dec_x = torch.from_numpy(dec_x).float()
dec_z = torch.from_numpy(dec_z).float()
dec_v = torch.from_numpy(dec_v).float()
if settings.USE_CUDA:
enc_x = enc_x.cuda()
enc_z = enc_z.cuda()
dec_x = dec_x.cuda()
dec_z = dec_z.cuda()
dec_v = dec_v.cuda()
loader = DataLoader(
dataset=dataset,
batch_size=settings.BATCH_SIZE,
shuffle=True
)
_, _, x_dim = x.shape
model = GaussianNet(x_dim)
if settings.USE_CUDA:
model = model.cuda()
model.train()
optimizer = optim.Adam(model.parameters(), lr=settings.LEARNING_RATE)
results = []
rmse_valid_low = rmse_mean(enc_x, enc_z, dec_x, dec_v)
for epoch in range(settings.EPOCHS):
for i, (x, z, v) in enumerate(loader):
x = Variable(x)
z = Variable(z)
v = Variable(v)
if settings.USE_CUDA:
x = x.cuda()
z = z.cuda()
v = v.cuda()
m, a = model(x, v)
loss = model.loss(z, m, a)
optimizer.zero_grad()
loss.backward()
optimizer.step()
rmse_valid = rmse_mean(enc_x, enc_z, dec_x, dec_v)
if rmse_valid < rmse_valid_low:
rmse_valid_low = rmse_valid
save_model('models/{}-{}-{:.2f}'.format(epoch, i, rmse_valid), model)
print('lowest rmse valid', rmse_valid)
print('rmse valid', rmse_valid)
print('epoch {} batch {}/{} loss: {}'.format(epoch, i, len(loader), loss))
save_model('models/1', model)
# plot(results)
print('rmse final', rmse_mean(enc_x, enc_z, dec_x, dec_v))