forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
53 lines (44 loc) · 1.48 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.nn.functional
from paddle.metric import Metric
class LogLoss(Metric):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.reset()
def compute(self, pred, label, *args):
return paddle.nn.functional.log_loss(pred, label).mean()
def update(self, pred, label, *args):
self.loss += self.compute(pred, label).item()
self.n += 1
return
def reset(self):
"""
Resets all of the metric state.
"""
self.loss = 0
self.n = 0
def accumulate(self):
"""
Computes and returns the accumulated metric.
"""
return self.loss / self.n
def _init_name(self, name):
name = name or 'log_loss'
self._name = [name]
def name(self):
"""
Return name of metric instance.
"""
return self._name