forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet.py
121 lines (108 loc) · 4.45 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
import numpy as np
import os
class MultiviewSimnetLayer(nn.Layer):
def __init__(self, query_encoder, title_encoder, query_encode_dim,
title_encode_dim, emb_size, emb_dim, hidden_size, margin,
query_len, pos_len, neg_len):
super(MultiviewSimnetLayer, self).__init__()
self.query_encoder = query_encoder
self.title_encoder = title_encoder
self.query_encode_dim = query_encode_dim
self.title_encode_dim = title_encode_dim
self.emb_size = emb_size
self.emb_dim = emb_dim
self.hidden_size = hidden_size
self.margin = margin
self.query_len = query_len
self.pos_len = pos_len
self.neg_len = neg_len
self.embedding = paddle.nn.Embedding(
self.emb_size, self.emb_dim, padding_idx=0, name="emb")
# grnn-encoder
if self.query_encoder == "gru":
self.gru = paddle.nn.GRU(self.emb_dim, self.query_encode_dim)
self.gru.bias_ih = 0
# cnn-encoder
self.cnn_encoder = []
if self.query_encoder == "cnn":
self.conv = nn.Conv1D(
in_channels=self.emb_dim,
out_channels=128,
kernel_size=3,
data_format='NLC')
self.cnn_encoder.append(self.conv)
self.act = paddle.nn.ReLU()
self.cnn_encoder.append(self.act)
#bow-encoder
# The bow encoder is only embodied in forward and does not need init
self.q_fc = paddle.nn.Linear(
in_features=self.query_encode_dim,
out_features=self.hidden_size,
name="q_fc")
self.t_fc = paddle.nn.Linear(
in_features=self.title_encode_dim,
out_features=self.hidden_size,
name="t_fc")
def forward(self, inputs, is_infer=False):
self.q_slots = inputs[0]
self.pt_slots = inputs[1]
if not is_infer:
self.nt_slots = inputs[2]
q_embs = [self.embedding(query) for query in self.q_slots]
q_encodes = []
for emb in q_embs:
emb = paddle.reshape(
emb, shape=[-1, self.query_len, self.query_encode_dim])
gru = self.gru(emb)
maxpool = paddle.max(gru[0], axis=1)
maxpool = paddle.reshape(
maxpool, shape=[-1, self.query_encode_dim])
q_encodes.append(maxpool)
q_concat = paddle.concat(q_encodes, axis=1)
q_hid = self.q_fc(q_concat)
pt_embs = [self.embedding(title) for title in self.pt_slots]
pt_encodes = []
for emb in pt_embs:
emb = paddle.reshape(
emb, shape=[-1, self.pos_len, self.title_encode_dim])
gru = self.gru(emb)
maxpool = paddle.max(gru[0], axis=1)
maxpool = paddle.reshape(
maxpool, shape=[-1, self.title_encode_dim])
pt_encodes.append(maxpool)
pt_concat = paddle.concat(pt_encodes, axis=1)
pt_hid = self.t_fc(pt_concat)
cos_pos = F.cosine_similarity(q_hid, pt_hid, axis=1).reshape([-1, 1])
if is_infer:
return cos_pos, paddle.ones(shape=[1, 1])
nt_embs = [self.embedding(title) for title in self.nt_slots]
nt_encodes = []
for emb in nt_embs:
emb = paddle.reshape(
emb, shape=[-1, self.neg_len, self.title_encode_dim])
gru = self.gru(emb)
maxpool = paddle.max(gru[0], axis=1)
maxpool = paddle.reshape(
maxpool, shape=[-1, self.title_encode_dim])
nt_encodes.append(maxpool)
nt_concat = paddle.concat(nt_encodes, axis=1)
nt_hid = self.t_fc(nt_concat)
cos_neg = F.cosine_similarity(q_hid, nt_hid, axis=1).reshape([-1, 1])
return cos_pos, cos_neg