forked from ES-DOC/esdoc-cim-v2-schema
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplatform_classes.py
288 lines (254 loc) · 12.3 KB
/
platform_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# -*- coding: utf-8 -*-
"""
.. module:: platform_classes.py
:synopsis: Set of CIM v2 ontology type definitions.
applying to the description of computers and the
performance of code running on those computers. of
"""
def compute_pool():
"""Homogeneous pool of nodes within a computing machine.
"""
return {
'type': 'class',
'base': None,
'is_abstract': False,
'pstr': ('{} [{}]', ('name','number_of_nodes')),
'properties': [
('accelerator_type', 'str', '0.1',
"Type of accelerator."),
('accelerators_per_node', 'int', '0.1',
"Number of accelerator units on a node."),
('clock_cycle_concurrency', 'int', '0.1',
'The number of operations which can be carried out concurrently in a single clock cycle of a single core. E.g. 4.'),
('clock_speed', 'shared.numeric', '0.1',
'The clock speed of a single core, in units of GHz. E.g. 3.6.'),
('compute_cores_per_node', 'int', '0.1',
"Number of CPU cores per node."),
('cpu_type', 'str', '0.1',
"CPU type."),
('description', 'str', '0.1',
"Textural description of pool."),
('memory_per_node', 'shared.numeric', '0.1',
"Memory per node."),
('model_number', 'str', '0.1',
"Model/Board number/type."),
('name', 'str', '0.1',
"Name of compute pool within a machine."),
('number_of_nodes', 'int', '0.1',
"Number of nodes."),
('vendor', 'linked_to(shared.party)', '0.1',
'Supplier of compute hardware in this pool'),
('network_cards_per_node','platform.nic','0.N',
'Available network interfaces on node'),
],
'derived': [
('total_cores', 'compute_cores_per_node * number_of_nodes'),
('total_memory', 'memory_per_node * number_of_nodes')
]
}
def interconnect():
""" The interconnect used within a machine to joining nodes together"""
return {
'type': 'class',
'base': None,
'is_abstract': False,
'pstr': ('{}', ('name',)),
'properties': [
('name', 'str', '0.1',
"Name of interconnnect."),
('topology', 'str', '0.1',
'Interconnect topology'),
('description', 'str', '0.1.',
'Technical description of interconnect layout'),
('vendor', 'linked_to(shared.party)', '0.1',
'Supplier of the interconnect')
]
}
def nic():
""" Network Interface Card"""
return {
'type': 'class',
'base': None,
'is_abstract': False,
'pstr': ('{}', ('name',)),
'properties': [
('name','str','1.1','Name of interface card'),
('vendor','linked_to(shared.party)','0.1','Vendor of network card'),
('bandwidth','shared.numeric','1.1','Bandwidth to network'),
]
}
def machine():
"""A computer/system/platform/machine which is used for simulation.
"""
return {
'type': 'class',
'base': 'platform.partition',
'is_abstract': False,
'pstr': ('{}', ('name',)),
'is_document': True,
'properties': [
('peak_performance', 'shared.numeric', '0.1',
'Total peak performance (RPeak in Top500 lingo)'),
('linpack_performance', 'shared.numeric', '0.1',
'Linpack performance (RMax in Top500 lingo)')
]
}
def partition():
"""A major partition (component) of a computing system (aka machine).
"""
return {
'type': 'class',
'base': None,
'is_abstract': False,
'pstr': ('{}', ('name',)),
'properties': [
('compute_pools', 'platform.compute_pool', '1.N',
"Layout of compute nodes."),
('interconnect', 'platform.interconnect', '0.1',
"Interconnect used."),
('description', 'str', '0.1',
"Textural description of machine."),
('institution', 'linked_to(shared.party)', '1.1',
"Institutional location."),
('model_number', 'str', '0.1',
"Vendor's model number/name - if it exists."),
('name', 'str', '1.1',
"Name of partition (or machine)."),
('online_documentation', 'shared.online_resource', '0.N',
"Links to documentation."),
('operating_system', 'str', '0.1',
"Operating system."),
('partition', 'platform.partition', '0.N',
"If machine is partitioned, treat subpartitions as machines."),
('storage_pools', 'platform.storage_pool', '0.N',
"Storage resource available."),
('vendor', 'linked_to(shared.party)', '0.1',
"The system integrator or vendor."),
('when_available', 'time.time_period', '0.1',
"If no longer in use, the time period it was in use.")
]
}
def performance():
"""
Describes the properties of a performance of a configured model on
a particular system/machine.
Based on "CPMIP: Measurements of Real Computational Performance of
Earth System Models" (Balaji et. al. 2016, doi:10.5194/gmd-2016-197).
"""
return {
'type': 'class',
'base': None,
'is_abstract': False,
'pstr': ('{} (sypd:{})', ('name', 'simulated_years_per_day')),
'is_document': True,
'properties': [
('name', 'str', '0.1',
"Name for performance (experiment/test/whatever)."),
# CPMIP model and platform
('model', 'linked_to(science.model)', '1.1',
"Model for which performance was tested."),
('resolution', 'int', '0.1',
'Resolution measured as the number of gridpoints (or more generally, spatial degrees of freedom) NX x NY x NZ per component with an independent discretization'),
('complexity', 'int', '0.1',
'Complexity measured as the number of prognostic variables per component with an independent discretization'),
('platform', 'linked_to(platform.machine)', '1.1',
'Platform on which performance was tested.'),
('compiler', 'str', '0.1',
"Compiler used for performance test."),
# CPMIP computational cost
('simulated_years_per_day', 'float', '0.1',
'Simulated years per day (SYPD) in a 24h period on the given platform'),
('actual_simulated_years_per_day', 'float', '0.1',
'Actual simulated years per day (ASYPD) in a 24h period on the given platform obtained from a typical long-running simulation with the model. Inclusive of system interruptions, queue wait time, or issues with the model workflow, etc.'),
('core_hours_per_simulated_year', 'float', '0.1',
'Core-hours per simulated year (CHSY). This is measured as the product of the model runtime for 1 SY, and the numbers of cores allocated. Note that if allocations are done on a node basis then all cores on a node are charged against the allocation, regardless of whether or not they are used.'),
('joules_per_simulated_year', 'float', '0.1',
'The energy cost of a simulation, measured in joules per simulated year (JPSY). Given the energy E in joules consumed over a budgeting interval T (generally 1 month or 1 year, in units of hours), JPSY=CHSY*E*T/NP'),
('parallelisation', 'float', '0.1',
'Total number of cores (NP) allocated for the run, regardless of whether or or all cores were used all of the time.'),
('further_detail', 'platform.performance_detail', '0.1',
'Set of additional information related to coupling, memory and I/O'),
# Subcomponent performance
('subcomponent_performance', 'linked_to(platform.performance)', '0.N',
"Describes the performance of each subcomponent.")
]
}
def performance_detail():
""" Information about how the various components of performance were related"""
return {
'type': 'class',
'base': None,
'is_abstract': False,
'is_document': False,
'properties': [
# CPMIP coupling, memory, I/O
('coupling_cost', 'float', '0.1',
'Coupling cost measures the overhead caused by coupling. This can include the cost of the coupling algorithm itself (which may involve grid interpolation and computation of transfer coefficients for conservative coupling) as well as load imbalance. It is the normalized difference between the time-processor integral for the whole model versus the sum of individual concurrent components'),
('memory_bloat', 'float', '0.1',
'Memory bloat is the ratio of the actual memory size to the ideal memory size (the size of the complete model state, which in theory is all you need to hold in memory)Mi, defined below.'),
('data_output_cost', 'float', '0.1',
'Data output cost is the cost of performing I/O, and is the ratio of CHSY with and without I/O.'),
('data_intensity', 'float', '0.1',
'Data intensity the amount of data produced per compute-hour, in units GB per compute-hour.'),
]
}
def project_cost():
""" Cost of an experiment or project on a particular platform """
return {
'type': 'class',
'base': None,
'is_abstract': False,
'is_document': True,
'pstr': ('Production: {}Y, {}', ('useful_years', 'useful_data')),
'properties': [
('activity', 'linked_to(activity.activity)', '1.1.', 'Project or Experiment of interest'),
('platform', 'linked_to(platform.machine)', '1.1.', 'Machine used for project'),
('useful_years', 'int', '1.1', 'Number of useful years simulated (or to be simulated) during this project'),
('useful_data', 'shared.numeric', '0.1', 'Volume of useful data to be analysed'),
('useful_core_hours','int', '0.1', 'Number of core-hours used for useful simulations within the project'),
('actual_years', 'int', '0.1', 'Number of actual years simulated, including spin-up tuning etc'),
('peak data', 'shared.numeric', '0.1', 'Maximum volume of data held during project'),
('total_core_hours', 'int', '0.1', 'Total number of core hours needed for all aspects of the project'),
('total_energy_cost', 'float', '0.1', 'Total cost of project in Joules, if known')
]
}
def storage_pool():
"""Homogeneous storage pool on a computing machine.
"""
return {
'type': 'class',
'base': None,
'is_abstract': False,
'pstr': ('{} {}', ('name', 'file_system_sizes')),
'properties': [
('description', 'str', '0.1',
"Description of the technology used."),
('name', 'str', '1.1',
"Name of storage pool."),
('type', 'platform.storage_systems', '0.1',
"Type of storage."),
('vendor', 'linked_to(shared.party)', '0.1',
"Vendor of storage hardware."),
('file_system_sizes','shared.numeric','1.N','Sizes of constituent File Systems')
],
}
def storage_systems():
"""Controlled vocabulary for storage types (including filesystems).
"""
return {
'type': 'enum',
'is_open': True,
'members': [
("Lustre", "Lustre parallel file system"),
("GPFS", "IBM GPFS (also known as IBM Spectral Scale"),
("isilon", "The EMC scaleout NAS solution"),
("NFS", "Generic Network File System"),
("S3", "Object file system exposing the AWS S3 interface"),
("PanFS", "Panasas Parallel File system"),
("Other Disk", "Other disk based file system"),
("Tape - MARS", "Tape storage system using ECMWF MARS"),
("Tape - MASS", "Tape storage system using Met Office MASS"),
("Tape - Castor", "Tape storage sytsem using CERN Castor"),
("Tape - Other", "Other tape based system")
]
}