|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "id": "be081589-e1b2-4569-acb7-44203e273899", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import matplotlib.pyplot as plt\n", |
| 11 | + "import itertools\n", |
| 12 | + "from faiss.contrib.evaluation import OperatingPoints\n", |
| 13 | + "from enum import Enum\n", |
| 14 | + "from bench_fw.benchmark_io import BenchmarkIO as BIO" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": null, |
| 20 | + "id": "a6492e95-24c7-4425-bf0a-27e10e879ca6", |
| 21 | + "metadata": {}, |
| 22 | + "outputs": [], |
| 23 | + "source": [ |
| 24 | + "root = \"/checkpoint\"\n", |
| 25 | + "results = BIO(root).read_json(\"result.json\")\n", |
| 26 | + "results.keys()" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "code", |
| 31 | + "execution_count": null, |
| 32 | + "id": "0875d269-aef4-426d-83dd-866970f43777", |
| 33 | + "metadata": {}, |
| 34 | + "outputs": [], |
| 35 | + "source": [ |
| 36 | + "results['indices']" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": null, |
| 42 | + "id": "a7ff7078-29c7-407c-a079-201877b764ad", |
| 43 | + "metadata": {}, |
| 44 | + "outputs": [], |
| 45 | + "source": [ |
| 46 | + "class Cost:\n", |
| 47 | + " def __init__(self, values):\n", |
| 48 | + " self.values = values\n", |
| 49 | + "\n", |
| 50 | + " def __le__(self, other):\n", |
| 51 | + " return all(v1 <= v2 for v1, v2 in zip(self.values, other.values, strict=True))\n", |
| 52 | + "\n", |
| 53 | + " def __lt__(self, other):\n", |
| 54 | + " return all(v1 < v2 for v1, v2 in zip(self.values, other.values, strict=True))\n", |
| 55 | + "\n", |
| 56 | + "class ParetoMode(Enum):\n", |
| 57 | + " DISABLE = 1 # no Pareto filtering\n", |
| 58 | + " INDEX = 2 # index-local optima\n", |
| 59 | + " GLOBAL = 3 # global optima\n", |
| 60 | + "\n", |
| 61 | + "\n", |
| 62 | + "class ParetoMetric(Enum):\n", |
| 63 | + " TIME = 0 # time vs accuracy\n", |
| 64 | + " SPACE = 1 # space vs accuracy\n", |
| 65 | + " TIME_SPACE = 2 # (time, space) vs accuracy\n", |
| 66 | + "\n", |
| 67 | + "def range_search_recall_at_precision(experiment, precision):\n", |
| 68 | + " return round(max(r for r, p in zip(experiment['range_search_pr']['recall'], experiment['range_search_pr']['precision']) if p > precision), 6)\n", |
| 69 | + "\n", |
| 70 | + "def filter_results(\n", |
| 71 | + " results,\n", |
| 72 | + " evaluation,\n", |
| 73 | + " accuracy_metric, # str or func\n", |
| 74 | + " time_metric=None, # func or None -> use default\n", |
| 75 | + " space_metric=None, # func or None -> use default\n", |
| 76 | + " min_accuracy=0,\n", |
| 77 | + " max_space=0,\n", |
| 78 | + " max_time=0,\n", |
| 79 | + " scaling_factor=1.0,\n", |
| 80 | + " \n", |
| 81 | + " pareto_mode=ParetoMode.DISABLE,\n", |
| 82 | + " pareto_metric=ParetoMetric.TIME,\n", |
| 83 | + "):\n", |
| 84 | + " if isinstance(accuracy_metric, str):\n", |
| 85 | + " accuracy_key = accuracy_metric\n", |
| 86 | + " accuracy_metric = lambda v: v[accuracy_key]\n", |
| 87 | + "\n", |
| 88 | + " if time_metric is None:\n", |
| 89 | + " time_metric = lambda v: v['time'] * scaling_factor + (v['quantizer']['time'] if 'quantizer' in v else 0)\n", |
| 90 | + "\n", |
| 91 | + " if space_metric is None:\n", |
| 92 | + " space_metric = lambda v: results['indices'][v['codec']]['code_size']\n", |
| 93 | + " \n", |
| 94 | + " fe = []\n", |
| 95 | + " ops = {}\n", |
| 96 | + " if pareto_mode == ParetoMode.GLOBAL:\n", |
| 97 | + " op = OperatingPoints()\n", |
| 98 | + " ops[\"global\"] = op\n", |
| 99 | + " for k, v in results['experiments'].items():\n", |
| 100 | + " if f\".{evaluation}\" in k:\n", |
| 101 | + " accuracy = accuracy_metric(v)\n", |
| 102 | + " if min_accuracy > 0 and accuracy < min_accuracy:\n", |
| 103 | + " continue\n", |
| 104 | + " space = space_metric(v)\n", |
| 105 | + " if max_space > 0 and space > max_space:\n", |
| 106 | + " continue\n", |
| 107 | + " time = time_metric(v)\n", |
| 108 | + " if max_time > 0 and time > max_time:\n", |
| 109 | + " continue\n", |
| 110 | + " idx_name = v['index']\n", |
| 111 | + " experiment = (accuracy, space, time, k, v)\n", |
| 112 | + " if pareto_mode == ParetoMode.DISABLE:\n", |
| 113 | + " fe.append(experiment)\n", |
| 114 | + " continue\n", |
| 115 | + " if pareto_mode == ParetoMode.INDEX:\n", |
| 116 | + " if idx_name not in ops:\n", |
| 117 | + " ops[idx_name] = OperatingPoints()\n", |
| 118 | + " op = ops[idx_name]\n", |
| 119 | + " if pareto_metric == ParetoMetric.TIME:\n", |
| 120 | + " op.add_operating_point(experiment, accuracy, time)\n", |
| 121 | + " elif pareto_metric == ParetoMetric.SPACE:\n", |
| 122 | + " op.add_operating_point(experiment, accuracy, space)\n", |
| 123 | + " else:\n", |
| 124 | + " op.add_operating_point(experiment, accuracy, Cost([time, space]))\n", |
| 125 | + "\n", |
| 126 | + " if ops:\n", |
| 127 | + " for op in ops.values():\n", |
| 128 | + " for v, _, _ in op.operating_points:\n", |
| 129 | + " fe.append(v)\n", |
| 130 | + "\n", |
| 131 | + " fe.sort()\n", |
| 132 | + " return fe" |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "cell_type": "code", |
| 137 | + "execution_count": null, |
| 138 | + "id": "f080a6e2-1565-418b-8732-4adeff03a099", |
| 139 | + "metadata": {}, |
| 140 | + "outputs": [], |
| 141 | + "source": [ |
| 142 | + "def plot_metric(experiments, accuracy_title, cost_title, plot_space=False):\n", |
| 143 | + " x = {}\n", |
| 144 | + " y = {}\n", |
| 145 | + " for accuracy, space, time, k, v in experiments:\n", |
| 146 | + " idx_name = v['index']\n", |
| 147 | + " if idx_name not in x:\n", |
| 148 | + " x[idx_name] = []\n", |
| 149 | + " y[idx_name] = []\n", |
| 150 | + " x[idx_name].append(accuracy)\n", |
| 151 | + " if plot_space:\n", |
| 152 | + " y[idx_name].append(space)\n", |
| 153 | + " else:\n", |
| 154 | + " y[idx_name].append(time)\n", |
| 155 | + "\n", |
| 156 | + " #plt.figure(figsize=(10,6))\n", |
| 157 | + " plt.yscale(\"log\")\n", |
| 158 | + " plt.title(accuracy_title)\n", |
| 159 | + " plt.xlabel(accuracy_title)\n", |
| 160 | + " plt.ylabel(cost_title)\n", |
| 161 | + " marker = itertools.cycle((\"o\", \"v\", \"^\", \"<\", \">\", \"s\", \"p\", \"P\", \"*\", \"h\", \"X\", \"D\")) \n", |
| 162 | + " for index in x.keys():\n", |
| 163 | + " plt.plot(x[index], y[index], marker=next(marker), label=index)\n", |
| 164 | + " plt.legend(bbox_to_anchor=(1, 1), loc='upper left')" |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | + "cell_type": "code", |
| 169 | + "execution_count": null, |
| 170 | + "id": "61007155-5edc-449e-835e-c141a01a2ae5", |
| 171 | + "metadata": {}, |
| 172 | + "outputs": [], |
| 173 | + "source": [ |
| 174 | + "accuracy_metric = \"knn_intersection\"\n", |
| 175 | + "fr = filter_results(results, evaluation=\"knn\", accuracy_metric=accuracy_metric, pareto_mode=ParetoMode.INDEX, pareto_metric=ParetoMetric.TIME, scaling_factor=1)\n", |
| 176 | + "plot_metric(fr, accuracy_title=\"knn intersection\", cost_title=\"time (seconds, 16 cores)\")" |
| 177 | + ] |
| 178 | + }, |
| 179 | + { |
| 180 | + "cell_type": "code", |
| 181 | + "execution_count": null, |
| 182 | + "id": "36e82084-18f6-4546-a717-163eb0224ee8", |
| 183 | + "metadata": {}, |
| 184 | + "outputs": [], |
| 185 | + "source": [ |
| 186 | + "precision = 0.8\n", |
| 187 | + "accuracy_metric = lambda exp: range_search_recall_at_precision(exp, precision)\n", |
| 188 | + "fr = filter_results(results, evaluation=\"weighted\", accuracy_metric=accuracy_metric, pareto_mode=ParetoMode.INDEX, pareto_metric=ParetoMetric.TIME, scaling_factor=1)\n", |
| 189 | + "plot_metric(fr, accuracy_title=f\"range recall @ precision {precision}\", cost_title=\"time (seconds, 16 cores)\")" |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "cell_type": "code", |
| 194 | + "execution_count": null, |
| 195 | + "id": "aff79376-39f7-47c0-8b83-1efe5192bb7e", |
| 196 | + "metadata": {}, |
| 197 | + "outputs": [], |
| 198 | + "source": [ |
| 199 | + "# index local optima\n", |
| 200 | + "precision = 0.2\n", |
| 201 | + "accuracy_metric = lambda exp: range_search_recall_at_precision(exp, precision)\n", |
| 202 | + "fr = filter_results(results, evaluation=\"weighted\", accuracy_metric=accuracy_metric, pareto_mode=ParetoMode.INDEX, pareto_metric=ParetoMetric.TIME, scaling_factor=1)\n", |
| 203 | + "plot_metric(fr, accuracy_title=f\"range recall @ precision {precision}\", cost_title=\"time (seconds, 16 cores)\")" |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "cell_type": "code", |
| 208 | + "execution_count": null, |
| 209 | + "id": "b4834f1f-bbbe-4cae-9aa0-a459b0c842d1", |
| 210 | + "metadata": {}, |
| 211 | + "outputs": [], |
| 212 | + "source": [ |
| 213 | + "# global optima\n", |
| 214 | + "precision = 0.8\n", |
| 215 | + "accuracy_metric = lambda exp: range_search_recall_at_precision(exp, precision)\n", |
| 216 | + "fr = filter_results(results, evaluation=\"weighted\", accuracy_metric=accuracy_metric, pareto_mode=ParetoMode.GLOBAL, pareto_metric=ParetoMetric.TIME, scaling_factor=1)\n", |
| 217 | + "plot_metric(fr, accuracy_title=f\"range recall @ precision {precision}\", cost_title=\"time (seconds, 16 cores)\")" |
| 218 | + ] |
| 219 | + }, |
| 220 | + { |
| 221 | + "cell_type": "code", |
| 222 | + "execution_count": null, |
| 223 | + "id": "9aead830-6209-4956-b7ea-4a5e0029d616", |
| 224 | + "metadata": {}, |
| 225 | + "outputs": [], |
| 226 | + "source": [ |
| 227 | + "def plot_range_search_pr_curves(experiments):\n", |
| 228 | + " x = {}\n", |
| 229 | + " y = {}\n", |
| 230 | + " show = {\n", |
| 231 | + " 'Flat': None,\n", |
| 232 | + " }\n", |
| 233 | + " for _, _, _, k, v in fr:\n", |
| 234 | + " if \".weighted\" in k: # and v['index'] in show:\n", |
| 235 | + " x[k] = v['range_search_pr']['recall']\n", |
| 236 | + " y[k] = v['range_search_pr']['precision']\n", |
| 237 | + " \n", |
| 238 | + " plt.title(\"range search recall\")\n", |
| 239 | + " plt.xlabel(\"recall\")\n", |
| 240 | + " plt.ylabel(\"precision\")\n", |
| 241 | + " for index in x.keys():\n", |
| 242 | + " plt.plot(x[index], y[index], '.', label=index)\n", |
| 243 | + " plt.legend(bbox_to_anchor=(1.0, 1.0), loc='upper left')" |
| 244 | + ] |
| 245 | + }, |
| 246 | + { |
| 247 | + "cell_type": "code", |
| 248 | + "execution_count": null, |
| 249 | + "id": "92e45502-7a31-4a15-90df-fa3032d7d350", |
| 250 | + "metadata": {}, |
| 251 | + "outputs": [], |
| 252 | + "source": [ |
| 253 | + "precision = 0.8\n", |
| 254 | + "accuracy_metric = lambda exp: range_search_recall_at_precision(exp, precision)\n", |
| 255 | + "fr = filter_results(results, evaluation=\"weighted\", accuracy_metric=accuracy_metric, pareto_mode=ParetoMode.GLOBAL, pareto_metric=ParetoMetric.TIME_SPACE, scaling_factor=1)\n", |
| 256 | + "plot_range_search_pr_curves(fr)" |
| 257 | + ] |
| 258 | + }, |
| 259 | + { |
| 260 | + "cell_type": "code", |
| 261 | + "execution_count": null, |
| 262 | + "id": "fdf8148a-0da6-4c5e-8d60-f8f85314574c", |
| 263 | + "metadata": {}, |
| 264 | + "outputs": [], |
| 265 | + "source": [] |
| 266 | + } |
| 267 | + ], |
| 268 | + "metadata": { |
| 269 | + "kernelspec": { |
| 270 | + "display_name": "Python [conda env:faiss_cpu_from_source] *", |
| 271 | + "language": "python", |
| 272 | + "name": "conda-env-faiss_cpu_from_source-py" |
| 273 | + }, |
| 274 | + "language_info": { |
| 275 | + "codemirror_mode": { |
| 276 | + "name": "ipython", |
| 277 | + "version": 3 |
| 278 | + }, |
| 279 | + "file_extension": ".py", |
| 280 | + "mimetype": "text/x-python", |
| 281 | + "name": "python", |
| 282 | + "nbconvert_exporter": "python", |
| 283 | + "pygments_lexer": "ipython3", |
| 284 | + "version": "3.11.5" |
| 285 | + } |
| 286 | + }, |
| 287 | + "nbformat": 4, |
| 288 | + "nbformat_minor": 5 |
| 289 | +} |
0 commit comments