This repo is contains source code for Random Forest Regression using Python. In this example i have used the boston dataset.
Explanation for this project.
I tried various tree size and given result below.
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
When the n_estimators is 40, it gives the better RMSE value.
Result for n_estimators=40
Mean Absolute Error: 2.52090551181
Mean Squared Error: 15.0942913386
Root Mean Squared Error: 3.88513723549
Result for n_estimators=50
Mean Absolute Error: 2.55118110236
Mean Squared Error: 15.7084229921
Root Mean Squared Error: 3.96338529443
Result for n_estimators=40
Mean Absolute Error: 2.52090551181
Mean Squared Error: 15.0942913386
Root Mean Squared Error: 3.88513723549
Result for n_estimators=30
Mean Absolute Error: 2.54162729659
Mean Squared Error: 15.5711529309
Root Mean Squared Error: 3.94603002154
Result for n_estimators=60
Mean Absolute Error: 2.55049868766
Mean Squared Error: 15.9157054243
Root Mean Squared Error: 3.98944926328
Result for n_estimators=100
Mean Absolute Error: 2.55906299213
Mean Squared Error: 16.7221060866
Root Mean Squared Error: 4.0892671821