-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathRZPulsesTrainGenerator.m
67 lines (57 loc) · 2.99 KB
/
RZPulsesTrainGenerator.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
function [RZPulsesTrainTime, RZPulsesTrain, RZBit0, RZBit1Gauss, LOff]=RZPulsesTrainGenerator(Carrier, gauss, InBitString, transmitters)
TrainLength= size(InBitString,1);
% Extinction ratio base amplitude level
LOff= gauss.A_0* 10^( gauss.r_ex/ 20); % optical amplitude for '0'
%LOff= 0.0; % TEST: no extinction ratio
% Time vector
RZPulsesTrainTime= zeros(TrainLength* Carrier.NPtos_Bit,1);
aux=( (1.5- Carrier.NPtos_Bit)/ (1- Carrier.NPtos_Bit) );
for i=1: Carrier.NPtos_Bit % GUARDA NUMERACION MATLAB
RZPulsesTrainTime(i)= Carrier.dt* ( aux* i- 0.5) ; % time for one slot
end
for k= 1: TrainLength
for i= 1: Carrier.NPtos_Bit
RZPulsesTrainTime( (k- 1)* Carrier.NPtos_Bit+ i)= RZPulsesTrainTime(i)+ Carrier.Bit_Slot* (k- 1); % copies time to following slots
end
end
% Pulse amplitude addition over base [RZ]
RZBit1Gauss= zeros(Carrier.NPtos_Bit,1);
for i= 1: Carrier.NPtos_Bit
RZBit1Gauss(i)= ( gauss.A_0- LOff)* exp(-0.5* ( ( ( RZPulsesTrainTime(i)- (0.25* Carrier.Bit_Slot) )/ gauss.T_0_amp) )^(2* gauss.m ) ); % SuperGaussian
RZBit1Gauss(i)= RZBit1Gauss(i)+ LOff; % adds for one active Tx
end
% % Pulse amplitude addition over base [NRZ]
% for i=0; Carrier.NPtos_Bit
% RZBit1Gauss(i)= gauss.A_0; % Square [NRZ]
% end
% RZ PULSES TRAIN (Amplitude)
RZPulsesTrain= zeros(TrainLength* Carrier.NPtos_Bit,1);
k= 0;
while(k<TrainLength)
senders= InBitString(k+1);
for i= 1: Carrier.NPtos_Bit
% Optical intensity addition
RZPulsesTrain(k* Carrier.NPtos_Bit+ i)= (transmitters- senders)* (LOff * LOff );
RZPulsesTrain(k* Carrier.NPtos_Bit+ i)= RZPulsesTrain(k* Carrier.NPtos_Bit+ i)+ senders* (RZBit1Gauss(i)* RZBit1Gauss(i) );
RZPulsesTrain(k* Carrier.NPtos_Bit+ i)= sqrt( RZPulsesTrain(k* Carrier.NPtos_Bit+ i) );
% % Electric field addition is assumed instead of a intensity sum
% RZPulsesTrain[k*(*Carrier).NPtos_Bit+i]= (float) RZBit0[i]; // '0' base
% RZPulsesTrain[k*(*Carrier).NPtos_Bit+i]+= (float) senders* RZBit1Gauss[i]; // '1' pulses addition
% RZPulsesTrain[k*(*Carrier).NPtos_Bit+i]= sqrt(RZPulsesTrain[k*(*Carrier).NPtos_Bit+i]);
end
k= k+ 1;
end
% '0' SLOT AMPLITUDE
RZBit0= zeros(Carrier.NPtos_Bit,1);
for i= 1: Carrier.NPtos_Bit
RZBit0(i)= sqrt( transmitters )* LOff; % base level for multiple transmitters
end
% '1' SLOT AMPLITUDE [NRZ/RZ]
for i=1: Carrier.NPtos_Bit
RZBit1Gauss(i)= sqrt( RZBit1Gauss(i)* RZBit1Gauss(i) + (transmitters- 1) * ( LOff * LOff) );
end
% WriteFile("amplitude0.dat", PulsesTrainTime, RZBit0, (*Carrier).NPtos_Bit); // TEST bitslot '0'
% WriteFile("amplitude1.dat", PulsesTrainTime, RZBit1Gauss, (*Carrier).NPtos_Bit); // TEST bitslot '1'
% WriteFile("RZPulsesTrain.dat", PulsesTrainTime, RZPulsesTrain, (*Carrier).NPtos_Tot); // TEST train to file
% for(i=0; i<(*Carrier).NPtos_Tot; i++)
% printf("%.3e\t%.3e\n",RZPulsesTrainTime[i],RZPulsesTrain[i]); // TEST