|
| 1 | +#!/usr/bin/env python |
| 2 | +""" |
| 3 | +Save/load pickles from Coupled Runs |
| 4 | +
|
| 5 | +Usage: |
| 6 | + Pickles.py PATH [options] |
| 7 | +
|
| 8 | +Examples: |
| 9 | + Create all: |
| 10 | + Pickles.py /Volumes/BB_4TB/Thesis/Results_03-19 |
| 11 | +
|
| 12 | + Create just infiltration |
| 13 | + Pickles.py . --var head |
| 14 | +
|
| 15 | +Arguments: |
| 16 | + PATH Directory with list of Model Runs (starts with Results_) |
| 17 | +
|
| 18 | +Options: |
| 19 | + --fmt=BOOL Run Formatting Script [default: 0] |
| 20 | + --var=STR One SWMM Variable: inf, evap, run, heads, soil [default: 0] |
| 21 | + --help Print this message |
| 22 | +
|
| 23 | +Notes: |
| 24 | + Created: 2017-03-06 |
| 25 | + Update: 2017-05-18 |
| 26 | +""" |
| 27 | +from __future__ import print_function |
| 28 | +import BB |
| 29 | +import os |
| 30 | +import os.path as op |
| 31 | +import shutil |
| 32 | + |
| 33 | +import time |
| 34 | +import linecache |
| 35 | +from collections import OrderedDict |
| 36 | +import numpy as np |
| 37 | +import pandas as pd |
| 38 | + |
| 39 | +from components import bcpl |
| 40 | +import PickleFmt, swmmtoolbox as swmtbx |
| 41 | +import flopy.utils.formattedfile as ff |
| 42 | +import flopy.utils.binaryfile as bf |
| 43 | +# |
| 44 | +from docopt import docopt |
| 45 | +from schema import Schema, Use, Or |
| 46 | + |
| 47 | +from multiprocessing import Pool |
| 48 | + |
| 49 | +class pickle_base(object): |
| 50 | + def __init__(self, path_result): |
| 51 | + self.path = path_result |
| 52 | + self.path_picks = self._make_pick_dir() |
| 53 | + _ = self._make_scenarios_slr() |
| 54 | + __ = self._make_ts() |
| 55 | + |
| 56 | + def _make_pick_dir(self, verbose=0): |
| 57 | + """ Make Pickles Directory if it doesn't exist """ |
| 58 | + path_pickle = op.join(self.path, 'Pickles') |
| 59 | + try: |
| 60 | + os.makedirs(path_pickle) |
| 61 | + except: |
| 62 | + if verbose: |
| 63 | + print ('WARNING - Overwriting exiting pickles in: \n\t{}'.format(path_pickle)) |
| 64 | + |
| 65 | + return path_pickle |
| 66 | + |
| 67 | + def _make_scenarios_slr(self): |
| 68 | + """ Get Scenarios and SLR from Dirs """ |
| 69 | + self.scenarios = [op.join(self.path, slr) for slr in os.listdir(self.path) |
| 70 | + if slr.startswith('SLR')] |
| 71 | + self.slr = [op.basename(scenario).split('_')[0][-3:] for |
| 72 | + scenario in self.scenarios] |
| 73 | + def _make_ts(self): |
| 74 | + """ Pull start/end time from any .out file """ |
| 75 | + slr_name = 'SLR-{}_{}'.format(self.slr[0], self.scenarios[0][-5:]) |
| 76 | + out_file = op.join(self.path, slr_name, slr_name + '.out') |
| 77 | + st_end = swmtbx.SwmmExtract(out_file).GetDates() # returns a tuple |
| 78 | + self.ts_hr = pd.date_range(st_end[0], st_end[1], freq='H') |
| 79 | + self.ts_day = pd.date_range(st_end[0], st_end[1], freq='D') |
| 80 | + |
| 81 | +class pickle_swmm(pickle_base): |
| 82 | + def __init__(self, path_result): |
| 83 | + pickle_base.__init__(self, path_result) |
| 84 | + |
| 85 | + def sys_out(self): |
| 86 | + """ |
| 87 | + Create a dataframe with SWMM out variables |
| 88 | + Careful with times: SWMM stops @ 1 hour of new day(12-30)-00:00); remove |
| 89 | + doesn't update last day because no precip i guess |
| 90 | + There should be a date given in path_result |
| 91 | + """ |
| 92 | + # precip, pet, flood, inf, runoff, evap |
| 93 | + varnames = ['Precip', 'Pet', 'Flood', 'Vol_Stored', 'Infil', 'Runoff', 'Surf_Evap'] |
| 94 | + variables = [1, 14, 10, 12, 3, 4, 13] |
| 95 | + sys_mat = np.zeros([len(self.ts_hr), len(varnames) * len(self.scenarios)]) |
| 96 | + colnames = [] |
| 97 | + for i, scenario in enumerate(self.scenarios): |
| 98 | + slr_name = op.basename(scenario) |
| 99 | + slr = slr_name[4:7] |
| 100 | + out_file = op.join(scenario, '{}.out'.format(slr_name)) |
| 101 | + colnames.extend(['{}_{}'.format(var_name, slr) for var_name in varnames]) |
| 102 | + for j,v in enumerate(variables): |
| 103 | + # pull and store in matrix; truncate last (empty) day to fit |
| 104 | + sys_mat[:, j+i*len(variables)] = (swmtbx.extract_arr(out_file, |
| 105 | + 'system,{},{}'.format(v,v)) |
| 106 | + [:len(self.ts_hr)]) |
| 107 | + swmm_sys = pd.DataFrame(sys_mat, index=self.ts_hr, columns=colnames) |
| 108 | + path_res = op.join(self.path_picks, 'swmm_sys.df') |
| 109 | + swmm_sys.to_pickle(path_res) |
| 110 | + print ('SYS DataFrame pickled to: {}'.format(path_res)) |
| 111 | + |
| 112 | +class pickle_uzf(pickle_base): |
| 113 | + def __init__(self, path_result): |
| 114 | + pickle_base.__init__(self, path_result) |
| 115 | + |
| 116 | + def uzf_arrays(self): |
| 117 | + """ |
| 118 | + Make 3d numpy arrays of shape (74*51*549) |
| 119 | + """ |
| 120 | + varnames = ['surf_leak', 'uzf_rch', 'uzf_et', 'uzf_run'] |
| 121 | + variables = ['SURFACE LEAKAGE', 'UZF RECHARGE', 'GW ET', 'HORT+DUNN'] |
| 122 | + for scenario in self.scenarios: |
| 123 | + slr_name = op.basename(scenario) |
| 124 | + slr = slr_name[4:7] |
| 125 | + uzf_file = op.join(scenario, '{}.uzfcb2.bin'.format(slr_name)) |
| 126 | + try: |
| 127 | + uzfobj = bf.CellBudgetFile(uzf_file, precision='single') |
| 128 | + except: |
| 129 | + uzfobj = bf.CellBudgetFile(uzf_file, precision='double') |
| 130 | + for i, variable in enumerate(variables): |
| 131 | + uzf_data = uzfobj.get_data(text=variable) |
| 132 | + sys_mat = np.zeros([len(self.ts_day), 74, 51]) |
| 133 | + for j in range(len(self.ts_day)): |
| 134 | + sys_mat[j,:,:] = uzf_data[j] |
| 135 | + # save separately so can load separately and faster |
| 136 | + path_res = op.join(self.path_picks, '{}_{}.npy'.format(varnames[i], slr)) |
| 137 | + np.save(path_res, sys_mat) |
| 138 | + print ('UZF arrays pickled to: {}'.format(self.path_picks)) |
| 139 | + |
| 140 | +class pickle_ext(pickle_base): |
| 141 | + def __init__(self, path_result): |
| 142 | + pickle_base.__init__(self, path_result) |
| 143 | + |
| 144 | + def ts_sums(self): |
| 145 | + varnames = ['FINF', 'GW_ET'] |
| 146 | + variables = ['finf', 'pet'] |
| 147 | + sys_mat = np.zeros([len(self.ts_day), len(varnames) * len(self.scenarios)]) |
| 148 | + colnames = [] |
| 149 | + for i, scenario in enumerate(self.scenarios): |
| 150 | + slr_name = op.basename(scenario) |
| 151 | + slr = slr_name[4:7] |
| 152 | + ext_dir = op.join(self.path, scenario, 'ext') |
| 153 | + colnames.extend(['{}_{}'.format(var_name, slr) for var_name in varnames]) |
| 154 | + for j in range(1, len(self.ts_day)+1): |
| 155 | + for k, v in enumerate(variables): |
| 156 | + v_file = op.join(ext_dir, '{}_{}.ref'.format(v, j)) |
| 157 | + var = np.fromfile(v_file, sep= ' ') |
| 158 | + sys_mat[j-1, k+i*len(varnames)] = var.reshape(74, 51).sum() |
| 159 | + |
| 160 | + ext_sys = pd.DataFrame(sys_mat, index=self.ts_day, columns=colnames) |
| 161 | + path_res = op.join(self.path_picks, 'ext_sums.df') |
| 162 | + ext_sys.to_pickle(path_res) |
| 163 | + print ('EXT DataFrame pickled to: {}'.format(path_res)) |
| 164 | + |
| 165 | +### multiprocessing cannot use class methods |
| 166 | +def _ts_heads(args): |
| 167 | + """ Pull heads from fhd file in parallel """ |
| 168 | + scenario, path_pickle = args |
| 169 | + slr_name = op.basename(scenario) |
| 170 | + slr = slr_name[4:7] |
| 171 | + head_file = op.join(scenario, op.basename(scenario) + '.fhd') |
| 172 | + try: |
| 173 | + hds = ff.FormattedHeadFile(head_file, precision='single') |
| 174 | + except: |
| 175 | + hds = ff.FormattedHeadFile(head_file, precision='double') |
| 176 | + heads = hds.get_alldata(mflay=0) |
| 177 | + res_path = op.join(path_pickle, 'heads_{}.npy'.format(slr)) |
| 178 | + np.save(res_path, heads) |
| 179 | + # print ('Np array pickled to to: {}'.format(res_path)) |
| 180 | + |
| 181 | +def _sub_var(args): |
| 182 | + """ |
| 183 | + All Subcatchments, All Times. One Variable. |
| 184 | + Pickle a npy for each scenario separately. |
| 185 | + Based on subs_rungw |
| 186 | + """ |
| 187 | + param_map = {'inf' : 3, 'evap' : 2, 'run' : 4, 'heads' : 6, 'soil' : 7} |
| 188 | + scenario, varname, ts, path_pickle = args |
| 189 | + |
| 190 | + # varnames = [varname] |
| 191 | + variables = [param_map[varname]] |
| 192 | + |
| 193 | + slr_name = op.basename(scenario) |
| 194 | + slr = slr_name[4:7] |
| 195 | + out_file = op.join(scenario, '{}.out'.format(slr_name)) |
| 196 | + sub_names = [int(name) for name in swmtbx.listdetail(out_file,'subcatchment')] |
| 197 | + sys_mat = np.zeros([len(ts), len(sub_names)*len(variables)]) |
| 198 | + |
| 199 | + for i, sub in enumerate(sub_names): |
| 200 | + for j, var in enumerate(variables): |
| 201 | + sys_mat[:, j+i*len(variables)] = (swmtbx.extract_arr(out_file, |
| 202 | + 'subcatchment,{},{}'.format(sub,var)) |
| 203 | + [:len(ts)]) |
| 204 | + |
| 205 | + path_arr = op.join(path_pickle, 'swmm_{}_{}.npy'.format(varname, slr)) |
| 206 | + np.save(path_arr, sys_mat) |
| 207 | + |
| 208 | +def main(path_result): |
| 209 | + swmm_obj = pickle_swmm(path_result) |
| 210 | + swmm_obj.sys_out() |
| 211 | + pickle_uzf(path_result).uzf_arrays() |
| 212 | + pickle_ext(path_result).ts_sums() |
| 213 | + return swmm_obj |
| 214 | + |
| 215 | +if __name__ == '__main__': |
| 216 | + start = time.time() |
| 217 | + arguments = docopt(__doc__) |
| 218 | + typecheck = Schema({'PATH' : os.path.exists, '--fmt' : Use(int), |
| 219 | + '--var' : Or(Use(int), str)}, ignore_extra_keys=True) |
| 220 | + PATH_result = op.abspath(typecheck.validate(arguments)['PATH']) |
| 221 | + args = typecheck.validate(arguments) |
| 222 | + |
| 223 | + ### 1 CPU |
| 224 | + swmm_obj = main(PATH_result) |
| 225 | + scenarios, path_picks = swmm_obj.scenarios, swmm_obj.path_picks |
| 226 | + ts_hr = swmm_obj.ts_hr |
| 227 | + |
| 228 | + if args['--fmt']: |
| 229 | + print ('Formatting Pickles') |
| 230 | + PickleFmt.main(PATH_result); |
| 231 | + |
| 232 | + elif args['--var']: |
| 233 | + print ('Pickling SWMM {} to {} ... '.format(args['--var'], path_picks)) |
| 234 | + pool = Pool(processes=len(scenarios)) |
| 235 | + res = pool.map(_sub_var, zip(scenarios, [args['--var']]*len(scenarios), |
| 236 | + [ts_hr]*len(scenarios), [path_picks]*len(scenarios))) |
| 237 | + |
| 238 | + ### Multiprocessing |
| 239 | + else: |
| 240 | + print ('Pickling FHD heads to: {}'.format(path_picks)) |
| 241 | + pool = Pool(processes=len(scenarios)) |
| 242 | + res = pool.map(_ts_heads, zip(scenarios, [path_picks] * len(scenarios))) |
| 243 | + |
| 244 | + print ('Pickling SWMM Heads to {} ... '.format(path_picks)) |
| 245 | + pool = Pool(processes=len(scenarios)) |
| 246 | + res = pool.map(_sub_var, zip(scenarios, ['heads']*len(scenarios), |
| 247 | + [ts_hr]*len(scenarios), [path_picks]*len(scenarios))) |
| 248 | + |
| 249 | + print ('Pickling SWMM Runoff to {} ... '.format(path_picks)) |
| 250 | + pool = Pool(processes=len(scenarios)) |
| 251 | + res = pool.map(_sub_var, zip(scenarios, ['run']*len(scenarios), |
| 252 | + [ts_hr]*len(scenarios), [path_picks]*len(scenarios))) |
| 253 | + |
| 254 | + print ('Pickling SWMM Infil to {} ... '.format(path_picks)) |
| 255 | + pool = Pool(processes=len(scenarios)) |
| 256 | + res = pool.map(_sub_var, zip(scenarios, ['inf']*len(scenarios), |
| 257 | + [ts_hr]*len(scenarios), [path_picks]*len(scenarios))) |
| 258 | + |
| 259 | + print ('Pickling SWMM Evap to {} ... '.format(path_picks)) |
| 260 | + pool = Pool(processes=len(scenarios)) |
| 261 | + res = pool.map(_sub_var, zip(scenarios, ['evap']*len(scenarios), |
| 262 | + [ts_hr]*len(scenarios), [path_picks]*len(scenarios))) |
| 263 | + |
| 264 | + print ('\nFormatting Data ...\n') |
| 265 | + PickleFmt.main(PATH_result); |
| 266 | + end = time.time() |
| 267 | + print ('Pickles made in ~ {} min'.format(round((end-start)/60., 2))) |
0 commit comments