-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpart1_task2.py
83 lines (67 loc) · 3.15 KB
/
part1_task2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gymnasium as gym
import numpy as np
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import VecNormalize, SubprocVecEnv
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.ppo import MlpPolicy
import pickle
# Define the custom wrapper to change torso mass
class ChangeMassWrapper(gym.Wrapper):
def __init__(self, env, torso_mass=6):
super().__init__(env)
self.torso_mass = torso_mass
self.env.model.body_mass[1] = self.torso_mass
# for Optuna hyperparameter optimization
# def train_expert(env, seed, best_params):
def train_expert(env, seed):
print("Training an expert.")
expert = PPO(
policy=MlpPolicy,
env=env,
seed=seed,
verbose=0,
batch_size=256,
gamma=0.99,
## for Optuna hyperparameter optimization
# batch_size=best_params['n_steps']*4, # n_steps * n_envs
# ent_coef=best_params['ent_coef'],
# learning_rate=best_params['learning_rate'],
# n_epochs=best_params['n_epochs'],
# n_steps=best_params['n_steps'],
# gamma=best_params['gamma'],
# gae_lambda=best_params['gae_lambda'],
# clip_range=best_params['clip_range'],
# vf_coef=best_params['vf_coef'],
)
expert.learn(total_timesteps=5000000) # Train with the best hyperparameters
return expert
if __name__ == "__main__":
env_id = 'Hopper-v4'
# Create the vectorized environment with custom torso masses
n_envs = 4 # Number of parallel environments
torso_masses = [3,6,9] # List of torso masses for evaluation environments
random_seeds = [0, 1, 2, 3, 4] # List of random seeds
for torso_mass in torso_masses:
print(f'Torso mass: {torso_mass}')
results = []
models = []
for seed in random_seeds:
env = make_vec_env(env_id, n_envs=n_envs, seed=seed, vec_env_cls=SubprocVecEnv,
wrapper_class=ChangeMassWrapper, wrapper_kwargs=dict(torso_mass=torso_mass))
# Normalize observations and rewards
env = VecNormalize(env, norm_obs=True, norm_reward=True)
# for Optuna hyperparameter optimization
# with open('env/best_params_task1.pkl', 'rb') as f:
# best_params = pickle.load(f)
# expert = train_expert(env, seed, best_params)
expert = train_expert(env, seed)
models.append(expert)
mean_reward, _ = evaluate_policy(expert, env, n_eval_episodes=50)
results.append(mean_reward)
print(f"Torso Mass: {torso_mass}, Mean of seeds mean rewards: {np.mean(results)}, Max of seeds mean rewards: {results[np.argmax(results)]}")
# save the model with the highest performance
model_to_save = models[np.argmax(results)]
# Save the trained model and environment statistics
model_to_save.save(f'models/hopper_torso_mass_{torso_mass}.zip')
env.save(f'env/hopper_v4_vecnormalize_torso_mass_{torso_mass}.pkl')