-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpart1_task1_render.py
71 lines (59 loc) · 2.24 KB
/
part1_task1_render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import gymnasium as gym
import numpy as np
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.vec_env import SubprocVecEnv, VecNormalize
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.ppo import MlpPolicy
import pickle
# def train_expert(env_id, best_params): # for Optuna hyperparameter optimization
def train_expert(env_id):
print("Training an expert.")
env = make_vec_env(env_id, n_envs=4, seed=0, vec_env_cls=SubprocVecEnv)
env = VecNormalize(env, norm_obs=True, norm_reward=True)
expert = PPO(
policy=MlpPolicy,
env=env,
seed=0,
verbose=0,
batch_size=256,
gamma=0.99,
## for Optuna hyperparameter optimization
# batch_size=best_params['n_steps']*4, # n_steps * n_envs
# ent_coef=best_params['ent_coef'],
# learning_rate=best_params['learning_rate'],
# n_epochs=best_params['n_epochs'],
# n_steps=best_params['n_steps'],
# gamma=best_params['gamma'],
# gae_lambda=best_params['gae_lambda'],
# clip_range=best_params['clip_range'],
# vf_coef=best_params['vf_coef'],
)
expert.learn(total_timesteps=5000000) # Train with the best hyperparameters
# Evaluate the trained policy
reward, _ = evaluate_policy(
expert.policy, # type: ignore[arg-type]
expert.env,
n_eval_episodes=10,
render=False,
)
print(f"Reward after training: {reward}")
return expert
if __name__ == '__main__':
env_id = 'Hopper-v4'
## for Optuna hyperparameter optimization
# with open('env/best_params_task1.pkl', 'rb') as f:
# best_params = pickle.load(f)
# # Now you can access the loaded best_params dictionary
# print(f"Best params: {best_params}")
# Create the Gym environment
env = gym.make(env_id, render_mode='human')
# expert = train_expert(env_id, best_params) # for Optuna hyperparameter optimization
expert = train_expert(env_id)
obs = env.reset()
done = False
while not done:
action, _ = expert.predict(obs[0])
env.step(action)
env.render()
env.close()