-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
78 lines (60 loc) · 2.45 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from transformers import BlipTokenizer, BlipForConditionalGeneration, BlipConfig
# Set up paths
data_dir = "data"
preprocessed_data_path = os.path.join(data_dir, "preprocessed_data.json")
output_dir = "output"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch_size = 16
num_epochs = 10
learning_rate = 1e-4
# Load preprocessed data
with open(preprocessed_data_path, "r") as file:
preprocessed_data = json.load(file)
# Define dataset and dataloader
class ImageCaptionDataset(torch.utils.data.Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
item = self.data[index]
image_path = item["image_path"]
caption = item["caption"]
image = Image.open(image_path).convert("RGB")
image = transforms.ToTensor()(image)
return image, caption
dataset = ImageCaptionDataset(preprocessed_data)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Load tokenizer and model configuration
tokenizer = BlipTokenizer.from_pretrained("Salesforce/blip-image-captioning-base")
config = BlipConfig.from_pretrained("Salesforce/blip-image-captioning-base")
config.vocab_size = tokenizer.vocab_size
# Define the model
model = BlipForConditionalGeneration(config)
model.to(device)
# Define optimizer and loss function
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss(ignore_index=tokenizer.pad_token_id)
# Training loop
for epoch in range(num_epochs):
total_loss = 0.0
for images, captions in dataloader:
images = images.to(device)
captions = tokenizer(captions, padding=True, truncation=True, return_tensors="pt").input_ids
captions = captions.to(device)
outputs = model(input_ids=images, decoder_input_ids=captions[:, :-1])
logits = outputs.logits
loss = criterion(logits.view(-1, logits.size(-1)), captions[:, 1:].contiguous().view(-1))
total_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
average_loss = total_loss / len(dataloader)
print(f"Epoch {epoch+1}/{num_epochs} | Loss: {average_loss}")
# Save the trained model
output_path = os.path.join(output_dir, "image_captioning_model.pt")
torch.save(model.state_dict(), output_path)