-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy path[lint]. Segment Tree Build II.java
executable file
·95 lines (79 loc) · 3.55 KB
/
[lint]. Segment Tree Build II.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
M
tags: Segment Tree, Divide and Conquer, Binary Tree, Lint
给一个array, 建造segment tree structure,
每个treeNode 里面存这个range里的 max value, return root node.
#### Segemnt Tree
- 给的是Array. 注意找区间内的max, assign给区间. 其余和普通的segment tree build一样
- 注意, segment tree是根据array index range 排位: 根据index in [0, array.length - 1]割开区间, break到底
- 最终start==end做结尾
- 这道题要trackmax, 那么在leaf node assign max=A[start] or A[end]
- 往上,parent一层的max:就是比较左右孩子,其实都是在两个sub-tree里面比较sub-tree的max。
- Devide and Conquer
- 先分,找到left/right,比较max,在create current node,再append到当前node上面。
- 实际上是depth-first, 自底向上建立起的。
```
/*
The structure of Segment Tree is a binary tree which each node
has two attributes start and end denote an segment / interval.
start and end are both integers, they should be assigned in following rules:
- The root's start and end is given by build method.
- The left child of node A has start=A.left, end=(A.left + A.right) / 2.
- The right child of node A has start=(A.left + A.right) / 2 + 1, end=A.right.
- if start equals to end, there will be no children for this node.
Implement a build method with a given array, so that we can
create a corresponding segment tree with every node value represent
the corresponding interval max value in the array, return the root of this segment tree.
Clarification
Segment Tree (a.k.a Interval Tree) is an advanced data structure which can support queries like:
- which of these intervals contain a given point
- which of these points are in a given interval
Example
Given [3,2,1,4]. The segment tree will be:
[0, 3] (max = 4)
/ \
[0, 1] (max = 3) [2, 3] (max = 4)
/ \ / \
[0, 0](max = 3) [1, 1](max = 2)[2, 2](max = 1) [3, 3] (max = 4)
*/
/*
Thoughts:
Similar to Segment Tree, where the start and end are just : 0 and arrary.length -1.
For max value: How about a backgracking? SO: split and recursive build tree first;
each recursion, compare the returnning left/right child's max value, and then put into curr node's max.
Note: each leaf node will have start==end, so their max is really easy to figure out.
*/
/**
* Definition of SegmentTreeNode:
* public class SegmentTreeNode {
* public int start, end, max;
* public SegmentTreeNode left, right;
* public SegmentTreeNode(int start, int end, int max) {
* this.start = start;
* this.end = end;
* this.max = max
* this.left = this.right = null;
* }
* }
*/
public class Solution {
/**
*@param A: a list of integer
*@return: The root of Segment Tree
*/
public SegmentTreeNode build(int[] A) {
if (A == null || A.length == 0) return null;
return buildHelper(0, A.length - 1, A);
}
public SegmentTreeNode buildHelper(int start, int end, int[] A) {
if (start > end) return null;
if (start == end) return new SegmentTreeNode(start, end, A[end]);
int mid = start + (end - start) / 2;
SegmentTreeNode left = buildHelper(start, mid, A);
SegmentTreeNode right = buildHelper(mid + 1, end, A);
SegmentTreeNode node = new SegmentTreeNode(start, end, Math.max(left.max, right.max));
node.left = left;
node.right = right;
return node;
}
}
```