-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi.py
438 lines (342 loc) · 16.2 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# -*- coding: utf-8 -*-
import numpy as np
import soundfile
import msinference
import re
import srt
import subprocess
import cv2
import markdown
import nltk
from Utils import text_utils
from pathlib import Path
from types import SimpleNamespace
from flask import Flask, request, send_from_directory
from flask_cors import CORS
from moviepy.editor import *
nltk.download('punkt')
nltk.download('punkt_tab')
Path('./flask_cache').mkdir(parents=True, exist_ok=True)
# SSH AGENT
# eval $(ssh-agent -s)
# ssh-add ~/.ssh/id_ed25519_github2024
#
# git remote set-url origin git@github.com:audeering/shift
# ==
def tts_multi_sentence(precomputed_style_vector=None,
text=None,
voice=None,
speed=None):
'''24 kHZ tts'''
if ('en_US/' in voice) or ('en_UK/' in voice) or (voice is None):
assert precomputed_style_vector is not None, 'For affective TTS, style vector is needed.'
if isinstance(text, str) and len(text) > 100:
text = text_utils.split_into_sentences(text) # split to short sentences (~200 phonemes max)
else:
text = [text] # list of D sentences
# STYLETTS2
x = []
for _sentence in text:
x.append(msinference.inference(_sentence,
precomputed_style_vector,
alpha=0.3,
beta=0.7,
diffusion_steps=7,
embedding_scale=1))
return np.concatenate(x)
# FOREIGN MMS-TTS
x = msinference.foreign(text=text,
lang=voice, # voice = 'romanian', 'serbian' 'hungarian'
speed=speed)
return x
def _resize(image, width=None, height=None, inter=cv2.INTER_AREA):
'''https://github.com/PyImageSearch/imutils/blob/master/imutils/convenience.py'''
# initialize the dimensions of the image to be resized and
# grab the image size
dim = None
(h, w) = image.shape[:2]
# if both the width and height are None, then return the
# original image
if width is None and height is None:
return image
# check to see if the width is None
if width is None:
# calculate the ratio of the height and construct the
# dimensions
r = height / float(h)
dim = (int(w * r), height)
# otherwise, the height is None
else:
# calculate the ratio of the width and construct the
# dimensions
r = width / float(w)
dim = (width, int(h * r))
# resize the image
resized = cv2.resize(image, dim, interpolation=inter)
# return the resized image
return resized
app = Flask(__name__)
cors = CORS(app)
@app.route("/")
def index():
with open('README.md', 'r') as f:
return markdown.markdown(f.read())
@app.route("/", methods=['GET', 'POST', 'PUT'])
def serve_wav():
# https://stackoverflow.com/questions/13522137/in-flask-convert-form-post-
# object-into-a-representation-suitable-for-mongodb
r = request.form.to_dict(flat=False)
# Physically Save Client Files - DELTE / of name ?
for f, obj in request.files.items():
obj.save(f'flask_cache/{f[-6:]}')
args = SimpleNamespace(
text = None if r.get('text') is None else 'flask_cache/' + r.get('text' )[0][-6:],
video = None if r.get('video') is None else 'flask_cache/' + r.get('video')[0][-6:],
image = None if r.get('image') is None else 'flask_cache/' + r.get('image')[0][-6:],
native = None if r.get('native') is None else 'flask_cache/' + r.get('native')[0][-6:],
affective = r.get('affective')[0],
voice = r.get('voice')[0],
speed = float(r.get('speed')[0]) # For Non-English MMS TTS
) # alpha_num('/folder1/folder2/file.txt')
# print('\n==RECOMPOSED as \n',request.data,request.form,'\n==')
print(args, 'ENTER Script')
do_video_dub = True if args.text.endswith('srt') else False
SILENT_VIDEO = '_silent_video.mp4'
AUDIO_TRACK = '_audio_track.wav'
if do_video_dub:
print('==\nFound .srt : {args.txt}, thus Video should be given as well\n\n')
with open(args.text, "r") as f:
s = f.read()
text = [[j.content, j.start.total_seconds(), j.end.total_seconds()] for j in srt.parse(s)]
assert args.video is not None
native_audio_file = '_tmp.wav'
subprocess.call(
["ffmpeg",
"-y", # https://stackoverflow.com/questions/39788972/ffmpeg-overwrite-output-file-if-exists
"-i",
args.video,
"-f",
"mp3",
"-ar",
"24000", # "22050 for mimic3",
"-vn",
native_audio_file])
x_native, _ = soundfile.read(native_audio_file) # reads mp3
x_native = x_native[:, 0] # stereo
# ffmpeg -i Sandra\ Kotevska\,\ Painting\ Rose\ bush\,\ mixed\ media\,\ 2017.\ \[NMzC_036MtE\].mkv -f mp3 -ar 22050 -vn out44.wa
else:
with open(args.text, 'r') as f:
t = ''.join(f)
text = re.sub(' +', ' ', t) # delete spaces
# ====STYLE VECTOR====
precomputed_style_vector = None
if args.native: # Voice Cloning
try:
precomputed_style_vector = msinference.compute_style(args.native)
except soundfile.LibsndfileError: # Fallback - internal voice
print('\n Could not voice clone audio:', args.native, 'fallback to video or Internal TTS voice.\n')
if do_video_dub: # Clone voice via Video
native_audio_file = args.video.replace('.', '').replace('/', '')
native_audio_file += '__native_audio_track.wav'
soundfile.write('tgt_spk.wav',
np.concatenate([
x_native[:int(4 * 24000)]], 0).astype(np.float32), 24000) # 27400?
precomputed_style_vector = msinference.compute_style('tgt_spk.wav')
# NOTE: style vector may be None
if precomputed_style_vector is None:
if 'en_US' in args.voice or 'en_UK' in args.voice:
_dir = '/' if args.affective else '_v2/'
precomputed_style_vector = msinference.compute_style(
'assets/wavs/style_vector' + _dir + args.voice.replace(
'/', '_').replace(
'#', '_').replace(
'cmu-arctic', 'cmu_arctic').replace(
'_low', '') + '.wav')
# NOTE: style vector is None for FOREIGN LANGS
# ====SILENT VIDEO====
if args.video is not None:
# banner
frame_tts = np.zeros((104, 1920, 3), dtype=np.uint8)
font = cv2.FONT_HERSHEY_SIMPLEX
bottomLeftCornerOfText = (240, 74) # w,h
fontScale = 2
fontColor = (255, 255, 255)
thickness = 4
lineType = 2
cv2.putText(frame_tts, 'TTS',
bottomLeftCornerOfText,
font,
fontScale,
fontColor,
thickness,
lineType)
# cv2.imshow('i', frame_tts); cv2.waitKey(); cv2.destroyAllWindows()
# ====================================== NATIVE VOICE
frame_orig = np.zeros((104, 1920, 3), dtype=np.uint8)
font = cv2.FONT_HERSHEY_SIMPLEX
bottomLeftCornerOfText = (101, 74) # w,h
fontScale = 2
fontColor = (255, 255, 255)
thickness = 4
lineType = 1000
cv2.putText(frame_orig, 'ORIGINAL VOICE',
bottomLeftCornerOfText,
font,
fontScale,
fontColor,
thickness,
lineType)
print(f'\n______________________________\n'
f'Gen Banners for TTS/Native Title {frame_tts.shape=} {frame_orig.shape=}'
f'\n______________________________\n')
# ====SILENT VIDEO EXTRACT====
# DONLOAD SRT from youtube
#
# yt-dlp --write-sub --sub-lang en --convert-subs "srt" https://www.youtube.com/watch?v=F1Ib7TAu7eg&list=PL4x2B6LSwFewdDvRnUTpBM7jkmpwouhPv&index=2
#
#
# .mkv ->.mp4 moviepy loads only .mp4
#
# ffmpeg -y -i Distaff\ \[qVonBgRXcWU\].mkv -c copy -c:a aac Distaff_qVonBgRXcWU.mp4
# video_file, srt_file = ['assets/Head_of_fortuna.mp4',
# 'assets/head_of_fortuna_en.srt']
#
video_file = args.video
vf = VideoFileClip(video_file)
# GET 1st FRAME to OBTAIN frame RESOLUTION
h, w, _ = vf.get_frame(0).shape
frame_tts = _resize(frame_tts, width=w)
frame_orig = _resize(frame_orig, width=w)
h, w, _ = frame_orig.shape
try:
# inpaint banner to say if native voice
num = x_native.shape[0]
is_tts = .5 + .5 * np.tanh(4*(np.linspace(-10, 10, num) + 7.4)) # fade heaviside
def inpaint_banner(get_frame, t):
'''blend banner - (now plays) tts or native voic
'''
im = np.copy(get_frame(t)) # pic
ix = int(t * 24000)
if is_tts[ix] > .5: # mask == 1 => tts / mask == 0 -> native
frame = frame_tts # rename frame to rsz_frame_... because if frame_tts is mod
# then is considered a "local variable" thus the "outer var"
# is not observed by python raising referenced before assign
else:
frame = frame_orig
# im[-h:, -w:, :] = (.4 * im[-h:, -w:, :] + .6 * frame_orig).astype(np.uint8)
offset_h = 24
print(f' > inpaint_banner() HAS NATIVE: {frame.shape=} {im.shape=}\n\n\n\n')
im[offset_h:h + offset_h, :w, :] = (.4 * im[offset_h:h + offset_h, :w, :]
+ .6 * frame).astype(np.uint8)
# im2 = np.concatenate([im, frame_tts], 0)
# cv2.imshow('t', im2); cv2.waitKey(); cv2.destroyAllWindows()
return im # np.concatenate([im, frane_ttts], 0)
except UnboundLocalError: # args.native == False
def inpaint_banner(get_frame, t):
im = np.copy(get_frame(t))
offset_h = 24
im[offset_h:h + offset_h, :w, :] = (.4 * im[offset_h:h+offset_h, :w, :]
+ .6 * frame_tts).astype(np.uint8)
return im
vf = vf.fl(inpaint_banner)
vf.write_videofile(SILENT_VIDEO)
# ==== SYNC .srt ====
if do_video_dub:
OUT_FILE = './flask_cache/tmp.mp4' #args.out_file + '_video_dub.mp4'
subtitles = text
MAX_LEN = int(subtitles[-1][2] + 17) * 24000
total = np.zeros(MAX_LEN, dtype=np.float32)
# 17 extra seconds fail-safe for long-last-segment
previous_segment_end = 0
pieces = []
for k, (_text_, orig_start, orig_end) in enumerate(subtitles):
x = tts_multi_sentence(
text=_text_,
precomputed_style_vector=precomputed_style_vector,
voice=args.voice,
speed=args.speed)
# PAUSES BETWEEN SUBTITLE SEGMENTS
orig_start = int(orig_start * 24000)
long_tts = (orig_start + len(x)) / 24000 - orig_end
if long_tts > 0: # TTS wants to finish beyond native_end -> tell = tell-diff/2
# MAX ALLOWED SHIFT to the LEFT is previous_segment_end
tts_start = min(previous_segment_end, orig_start - int(long_tts))
else:
tts_start = max(orig_start, previous_segment_end) # to assure that we don't cut a long
# unfinished previous segment we should use as tts_start
# the max(orig_start, previous_segment_end)
previous_segment_end = tts_start + len(x)
total[tts_start:previous_segment_end] = x
# --
# PAD SHORTEST of TTS / NATIVE
if len(x_native) > len(total):
total = np.pad(total, (0, max(0, x_native.shape[0] - total.shape[0])))
else:
shorter_n = x_native.shape[0]
longer_n = total.shape[0]
x_native = np.pad(x_native, (0, max(0, longer_n - shorter_n)))
is_tts = np.pad(is_tts, (0, max(0, longer_n - shorter_n)))
# print(total.shape, x_native.shape, is_tts.shape, 'PADDED TRACKS')
soundfile.write(AUDIO_TRACK,
(is_tts * total + (1-is_tts) * x_native)[:, None],
# (.64 * total + .27 * x_native)[:, None],
24000)
else: # Video from plain (.txt)
OUT_FILE = './flask_cache/tmp.mp4' #args.out_file + '_video_from_txt.mp4'
x = tts_multi_sentence(text=text,
precomputed_style_vector=precomputed_style_vector,
voice=args.voice, speed=args.speed)
soundfile.write(AUDIO_TRACK, x, 24000)
# IMAGE 2 SPEECH
if args.image is not None:
STATIC_FRAME = args.image # 'assets/image_from_T31.jpg'
OUT_FILE = './flask_cache/tmp.mp4' #args.out_file + '_image_to_speech.mp4'
# SILENT CLIP
clip_silent = ImageClip(STATIC_FRAME).set_duration(5) # as long as the audio - TTS first
clip_silent.write_videofile(SILENT_VIDEO, fps=24)
x = tts_multi_sentence(text=text,
precomputed_style_vector=precomputed_style_vector,
voice=args.voice, speed=args.speed
)
soundfile.write(AUDIO_TRACK, x, 24000)
if args.video or args.image:
# write final output video
subprocess.call(
["ffmpeg",
"-y",
"-i",
SILENT_VIDEO,
"-i",
AUDIO_TRACK,
"-c:v",
"copy",
"-map",
"0:v:0",
"-map",
" 1:a:0",
OUT_FILE])
print(f'\nIM2SPeech: output video is saved as {OUT_FILE}')
else:
# Fallback: No image nor video provided - do only tts
x = tts_multi_sentence(text=text,
precomputed_style_vector=precomputed_style_vector,
voice=args.voice,
speed=args.speed)
OUT_FILE = './flask_cache/tmp.wav' #args.out_file + '.wav'
soundfile.write(OUT_FILE, x, 24000)
print(f'\nFALLBACK: output video is saved as {OUT_FILE}')
# audios = [msinference.inference(text,
# msinference.compute_style(f'voices/{voice}.wav'),
# alpha=0.3, beta=0.7, diffusion_steps=7, embedding_scale=1)]
# # for t in [text]:
# output_buffer = io.BytesIO()
# write(output_buffer, 24000, np.concatenate(audios))
# response = Response(output_buffer.getvalue())
# response.headers["Content-Type"] = "audio/wav"
# https://stackoverflow.com/questions/67591467/
# flask-shows-typeerror-send-from-directory-missing-1-required-positional-argum
response = send_from_directory('flask_cache/', path=OUT_FILE.split('/')[-1])
response.headers['suffix-file-type'] = OUT_FILE.split('/')[-1]
return response
if __name__ == "__main__":
app.run(host="0.0.0.0")