-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
176 lines (138 loc) · 5.5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import argparse
import glob
import logging
import os
import pickle
import random
import sys
import time
from math import log, pi, sqrt
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.utils
import torchvision
from PIL import Image
from torch import nn, optim
from torch.autograd import Variable, grad
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from torchvision import utils as tvutils
from tqdm import tqdm
from utils import calc_z_shapes, likelihood_loss
from model import Network as EnsembleNetwork
import multiprocessing
multiprocessing.set_start_method("spawn", True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser(description='NADS Evaluation')
parser.add_argument('--n_flow', default=32, type=int, help='number of flows in each block')
parser.add_argument('--n_block', default=4, type=int, help='number of blocks')
parser.add_argument('--no_lu', action='store_true', help='use plain convolution instead of LU decomposed version')
parser.add_argument('--affine', action='store_true', default="True", help='use affine coupling instead of additive')
parser.add_argument('--n_bits', default=5, type=int, help='number of bits')
parser.add_argument('--lr', default=1e-4, type=float, help='learning rate')
parser.add_argument('--img_size', default=64, type=int, help='image size')
parser.add_argument('--temp', default=0.7, type=float, help='temperature of sampling')
parser.add_argument('--n_sample', default=20, type=int, help='number of samples')
parser.add_argument('--weights_name', default="mnist_1", type=str, help='weight name')
parser.add_argument('--gpu', default="0", type=int, help='gpu')
def sample_data(path, image_size):
transform = transforms.Compose(
[
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
]
)
dataset = datasets.ImageFolder(path, transform=transform)
loader = DataLoader(dataset, shuffle=False, batch_size=1, num_workers=4)
return loader
def sample_data_one_channel(path, image_size):
transform = transforms.Compose(
[
transforms.Grayscale(),
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
]
)
dataset = datasets.ImageFolder(path, transform=transform)
loader = DataLoader(dataset, shuffle=False, batch_size=1, num_workers=4)
return loader
def sample_mnist(image_size):
transform = transforms.Compose(
[
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
]
)
dataset = torchvision.datasets.MNIST("../../data/", train=False, transform=transform, target_transform=None, download=True)
loader = DataLoader(dataset, shuffle=False, batch_size=1, num_workers=4)
return loader
def sample_kmnist(image_size):
transform = transforms.Compose(
[
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
]
)
dataset = torchvision.datasets.KMNIST("../../data/", train=False, transform=transform, target_transform=None, download=True)
loader = DataLoader(dataset, shuffle=False, batch_size=1, num_workers=4)
return loader
def sample_fmnist(image_size):
transform = transforms.Compose(
[
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
]
)
dataset = torchvision.datasets.FashionMNIST("../../data/", train=False, transform=transform, target_transform=None, download=True)
loader = DataLoader(dataset, shuffle=False, batch_size=1, num_workers=4)
return loader
def compute_likelihoods(args, model, dset, weights_name):
if dset == "mnist":
dataset = sample_mnist(args.img_size)
elif dset == "kmnist":
dataset = sample_kmnist(args.img_size)
elif dset == "fmnist":
dataset = sample_fmnist(args.img_size)
elif dset == "notmnist":
dataset = sample_data_one_channel("notMNIST_large/", args.img_size)
n_bins = 2. ** args.n_bits
log_likelihoods = []
for i, datapoint in enumerate(dataset):
image, _ = datapoint
image = image.to(device)
log_p, logdet, _ = model(image + torch.rand_like(image) / n_bins)
logdet = logdet.mean()
loss, log_p, log_det = likelihood_loss(log_p, logdet, args.img_size, n_bins)
log_likelihoods.append(log_p.item() + log_det.item())
print('#{} Loss: {}; logP: {}; logdet: {}'.format(i, loss.item(), log_p.item(), log_det.item()))
if i % 20 == 0:
np.save(dset + "_" + weights_name + "_likelihoods", np.array(log_likelihoods))
np.save(dset + "_" + weights_name + "_likelihoods", np.array(log_likelihoods))
if __name__ == '__main__':
args = parser.parse_args()
torch.cuda.set_device(args.gpu)
print(args)
# Define model and loss criteria
n_bins = 2. ** args.n_bits
weights_name = args.weights_name
with open(weights_name + '.pkl', 'rb') as fp:
genotype = pickle.load(fp)
model_single = EnsembleNetwork(1, args.n_flow, args.n_block, n_bins, genotype, affine=args.affine, conv_lu=not args.no_lu)
model = model_single
model = model.to(device)
model.load_state_dict(torch.load(weights_name + ".pt", map_location="cuda:{}".format(args.gpu)))
dset = "mnist"
compute_likelihoods(args, model, dset, weights_name)
dset = "kmnist"
compute_likelihoods(args, model, dset, weights_name)
dset = "fmnist"
compute_likelihoods(args, model, dset, weights_name)
dset = "notmnist"
compute_likelihoods(args, model, dset, weights_name)