-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheck_model.R
134 lines (107 loc) · 3.62 KB
/
check_model.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Rsq
rsq <- function(output, x, par = "p") {
# Population means
pop <- extract_long(fit, par, id = "pop") %>%
spread(par, val) %>%
rename_at(vars(one_of(par)), ~"mu_pop")
# Plot level effects
plt <- extract_long(fit, pars = "u", id = "plt") %>%
spread(par, val)
# Treatment effects
trt <- extract_long(fit, pars = "beta", id = "ref") %>%
spread(par, val) %>%
mutate(trt = as.numeric(ref) + max(x$grp))
left_join(x, pop) %>%
left_join(plt) %>%
left_join(trt) %>%
mutate(beta = if_else(is.na(beta), 1, beta),
mu_trt = mu_pop * beta,
mu_plt = mu_pop * u,
mu_all = mu_trt * u) %>%
select(sample, abun_std, matches("mu")) %>%
gather(level, pred, -sample, -abun_std) %>%
mutate(e = abun_std - pred) %>%
group_by(level, sample) %>%
summarise(rsq = var(pred) / (var(pred) + var(e))) %>%
quantiles("rsq")
}
diagnostics <- function(output) {
diagnostics <- summary(output$fit)$summary %>%
as.data.frame() %>%
rownames_to_column("par") %>%
select(par, Rhat, n_eff)
message("Worst sampled parameters")
print(summarise(diagnostics,
r_hat = max(Rhat),
n_eff = min(n_eff)))
posterior_summary(diagnostics)
}
extract_long <- function(fit, pars, id = NA) {
divergent <- get_sampler_params(fit, inc_warmup = F) %>%
map_df(., as.data.frame) %>%
rename_all(~ gsub("_", "", .)) %>%
select(divergent) %>%
mutate_all(~ if_else(. == 1, T, F)) %>%
rowid_to_column("sample")
samples <- extract(fit, pars = pars,
permuted = F,
inc_warmup = F) %>%
as.data.frame() %>%
rowid_to_column("iteration") %>%
gather(chain, val, -iteration) %>%
separate(chain, c("chain", "par"), sep = "\\.") %>%
spread(par, val) %>%
rowid_to_column("sample") %>%
gather(par, val, -chain, -iteration, -sample) %>%
left_join(divergent)
if(!is.na(id)) {
samples <- separate(samples, par, c("par", id),
sep = "\\[|\\]", extra = "drop") %>%
mutate_at(vars(matches(id)), as.numeric)
}
samples <- spread(samples, par, val)
return(samples)
}
quantiles <- function(df, par) {
summarise_at(df, vars(one_of(par)),
.funs = list(mean = ~ mean(.),
low = ~ quantile(., 0.025),
high = ~ quantile(., 0.975)))
}
posterior <- function(output) {
x <- get_x(get_y(output$fields, quietly = T))
message("Loading model")
model <- output$model
expose_stan_functions(output$model_file)
pars <- switch(model,
f1 = c("p"),
f1b = c("p"),
f2 = c("p0", "pK"),
f2b = c("p0", "pK"),
f3 = c("p0", "pK", "tK", "tmax"),
f3b = c("p0", "pK", "tK", "tmax"))
pop <- extract_long(output$fit, pars = pars, id = "pop") %>%
left_join(get_p(x))
# Plot level effects
plt <- extract_long(output$fit, pars = "u", id = "plt") %>%
left_join(get_u(x))
# Treatment effects
trt <- extract_long(output$fit, pars = "beta", id = "ref") %>%
mutate(trt = as.numeric(ref) + max(x$grp)) %>%
left_join(get_g(x))
# Time steps
ts <- output$data_list$T
post <- left_join(pop, plt) %>%
left_join(trt) %>%
left_join(x)
rm(list = c("output", "pop", "plt", "trt"))
gc()
if (grepl("f2", model)) {
growth <- extract_long(output$fit, pars = "rK", id = "grp") %>%
left_join(get_p(x))
post = left_join(post, growth)
} else if (grepl("f3", model)) {
pred = mutate(pop, pred = beta_curve(p0, pK, tK, tmax, t, n()))
}
return(pred)
}