forked from quantumlib/Qualtran
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_gate.py
48 lines (39 loc) · 1.49 KB
/
random_gate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
import numpy as np
from attrs import field, frozen
from cirq.testing import random_unitary
from qualtran import GateWithRegisters, Signature
@frozen
class RandomGate(GateWithRegisters):
bitsize: int
matrix: Tuple[Tuple[complex, ...], ...] = field(
converter=lambda mat: tuple(tuple(row) for row in mat)
)
@staticmethod
def create(bitsize: int, *, random_state=None) -> 'RandomGate':
matrix = random_unitary(2**bitsize, random_state=random_state)
return RandomGate(bitsize, matrix)
@property
def signature(self) -> Signature:
return Signature.build(q=self.bitsize)
def _unitary_(self):
return np.array(self.matrix)
def adjoint(self) -> 'RandomGate':
return RandomGate(self.bitsize, np.conj(self.matrix).T)
def __pow__(self, power):
if power == -1:
return self.adjoint()
return NotImplemented