Skip to content

Commit 20a91a8

Browse files
authored
docs: Added example of using Langchain's OpenAI embedding function in Chroma (#35)
1 parent ff8a5ff commit 20a91a8

File tree

1 file changed

+37
-10
lines changed

1 file changed

+37
-10
lines changed

docs/integrations/langchain/embeddings.md

+37-10
Original file line numberDiff line numberDiff line change
@@ -18,18 +18,45 @@ As of version `0.5.x` Chroma offers a built-in two-way adapter to convert Langch
1818
embeddings that can be used by both LC and Chroma. Implementation can be
1919
found [here](https://github.com/chroma-core/chroma/blob/main/chromadb/utils/embedding_functions/chroma_langchain_embedding_function.py).
2020

21-
```python
22-
# pip install chromadb langchain langchain-huggingface langchain-chroma
23-
import chromadb
24-
from chromadb.utils.embedding_functions import create_langchain_embedding
25-
from langchain_huggingface import HuggingFaceEmbeddings
21+
=== "HuggingFace"
2622

27-
langchain_embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
23+
Find out more about Langchain's HuggingFace embeddings [here](https://python.langchain.com/docs/integrations/platforms/huggingface/#embedding-models).
2824

29-
ef = create_langchain_embedding(langchain_embeddings)
30-
client = chromadb.PersistentClient(path="/test_folder_1")
31-
collection = client.get_or_create_collection(name="name_1", embedding_function=ef)
32-
```
25+
```python
26+
# pip install chromadb langchain langchain-huggingface langchain-chroma
27+
import chromadb
28+
from chromadb.utils.embedding_functions import create_langchain_embedding
29+
from langchain_huggingface import HuggingFaceEmbeddings
30+
31+
langchain_embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
32+
33+
ef = create_langchain_embedding(langchain_embeddings)
34+
client = chromadb.PersistentClient(path="./chroma-data")
35+
collection = client.get_or_create_collection(name="my_collection", embedding_function=ef)
36+
37+
collection.add(ids=["1"],documents=["test document goes here"])
38+
```
39+
40+
=== "OpenAI"
41+
42+
Find out more about Langchain's OpenAI embeddings [here](https://python.langchain.com/docs/integrations/text_embedding/openai/).
43+
44+
```python
45+
import chromadb
46+
from chromadb.utils.embedding_functions import create_langchain_embedding
47+
from langchain_openai import OpenAIEmbeddings
48+
from google.colab import userdata
49+
50+
langchain_embeddings = OpenAIEmbeddings(
51+
model="text-embedding-3-large",
52+
api_key=os.environ["OPENAI_API_KEY"],
53+
)
54+
ef = create_langchain_embedding(langchain_embeddings)
55+
client = chromadb.PersistentClient(path="/chroma-data")
56+
collection = client.get_or_create_collection(name="my_collection", embedding_function=ef)
57+
58+
collection.add(ids=["1"],documents=["test document goes here"])
59+
```
3360

3461
### Custom Adapter
3562

0 commit comments

Comments
 (0)