-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata.py
212 lines (190 loc) · 8.14 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# -*- coding: utf-8 -*-
# General libs
import glob
import numpy as np
import subprocess
import os
# User libs
import utils
np.random.seed(1)
def convert_data(paths_from):
file_paths = glob.glob(paths_from)
if file_paths == []:
sys.exit("no paths found ..!")
for path in file_paths:
print "Opening: %s" % path
dat = np.genfromtxt(path, delimiter=',').astype('float32')
save_path = path.replace('.csv', '.npy.gz')
save_path = save_path.replace('csv', 'numpy')
utils.save_gz(save_path,dat)
print "Saved to %s" % save_path
TRAIN_PATH = "data/numpy/train/Btrn1.npy.gz"
def load_train(CVsplit):
if not os.path.isfile(TRAIN_PATH):
print("Downloading and extracting train ...")
subprocess.call("bash download_train.sh", shell=True)
subprocess.call("python create_data.py train", shell=True)
else:
print "Train already downloaded ..."
xb_train = utils.load_gz('data/numpy/train/Btrn%s.npy.gz' % CVsplit).astype('float32')
tb_train = np.zeros((xb_train.shape[0]), dtype='float32')
xs_train = utils.load_gz('data/numpy/train/Strn%s.npy.gz' % CVsplit).astype('float32')
ts_train = np.ones((xs_train.shape[0]), dtype='float32')
xb_valid = utils.load_gz('data/numpy/train/Bval%s.npy.gz' % CVsplit).astype('float32')
tb_valid = np.zeros((xb_valid.shape[0]), dtype='float32')
xs_valid = utils.load_gz('data/numpy/train/Sval%s.npy.gz' % CVsplit).astype('float32')
ts_valid = np.ones((xs_valid.shape[0]), dtype='float32')
return xb_train, xb_valid, tb_train, tb_valid, xs_train, xs_valid, ts_train, ts_valid
TEST_PATH = "data/numpy/test/Btst1.npy.gz"
def load_test(CVsplit):
if not os.path.isfile(TEST_PATH):
print("Downloading and extracting test ...")
subprocess.call("bash download_test.sh", shell=True)
subprocess.call("python create_data.py test", shell=True)
else:
print "Test already downloaded ..."
xb_test = utils.load_gz('data/numpy/test/Btst%s.npy.gz' % CVsplit).astype('float32')
tb_test = np.zeros((xb_test.shape[0]), dtype='float32')
xs_test = utils.load_gz('data/numpy/test/Stst%s.npy.gz' % CVsplit).astype('float32')
ts_test = np.ones((xs_test.shape[0]), dtype='float32')
return xb_test, tb_test, xs_test, ts_test
def load_data(split, train=True):
dict_out = dict()
xb_train, xb_valid, tb_train, tb_valid, xs_train, xs_valid, \
ts_train, ts_valid = load_train(split)
if train:
dict_out['Xb_train'] = xb_train
dict_out['Xs_train'] = xs_train
dict_out['tb_train'] = tb_train
dict_out['ts_train'] = ts_train
else:
xb_test, tb_test, xs_test, ts_test = load_test(split)
X_test = np.concatenate([xb_test, xs_test], axis=0)
t_test = np.concatenate([tb_test, ts_test], axis=0)
#idcs_test = list(range(X_test.shape[0]))
#np.random.shuffle(idcs_test)
dict_out['X_test'] = X_test#[idcs_test]
dict_out['t_test'] = t_test#[idcs_test]
X_valid = np.concatenate([xb_valid, xs_valid], axis=0)
t_valid = np.concatenate([tb_valid, ts_valid], axis=0)
#idcs_valid = list(range(X_valid.shape[0]))
#np.random.shuffle(idcs_valid)
dict_out['X_valid'] = X_valid#[idcs_valid]
dict_out['t_valid'] = t_valid#[idcs_valid]
return dict_out
class gen_data():
def __init__(self, split, num_iterations=10000, batch_size=100,
data_fn=load_data, train=True):
print("initializing data generator!")
self._num_iterations = num_iterations
self._batch_size = batch_size
self._data_dict = load_data(split, train)
print(self._data_dict.keys())
if 'Xb_train' in self._data_dict.keys():
if 'tb_train' in self._data_dict.keys():
print("Training is found!")
self._idcs_train_b = np.arange(0, self._data_dict['Xb_train'].shape[0])
self._idcs_train_s = np.arange(0, self._data_dict['Xs_train'].shape[0])
self._num_features = self._data_dict['Xb_train'].shape[-1]
if 'X_valid' in self._data_dict.keys():
if 't_valid' in self._data_dict.keys():
print("Valid is found!")
self._idcs_valid = np.arange(0, self._data_dict['X_valid'].shape[0])
self._num_features = self._data_dict['X_valid'].shape[-1]
if 'X_test' in self._data_dict.keys():
if 't_test' in self._data_dict.keys():
print("Test is found!")
self._idcs_test = np.arange(0, self._data_dict['X_test'].shape[0])
self._num_features = self._data_dict['X_test'].shape[-1]
def _shuffle_train(self):
np.random.shuffle(self._idcs_train_b)
np.random.shuffle(self._idcs_train_s)
def _batch_init(self):
batch_holder = dict()
batch_holder["X"] = np.zeros((self._batch_size, self._num_features), dtype="float32")
batch_holder["t"] = np.zeros((self._batch_size,), dtype="float32")
return batch_holder
def gen_valid(self):
batch = self._batch_init()
i = 0
for idx in self._idcs_valid:
batch['X'][i] = self._data_dict['X_valid'][idx]
batch['t'][i] = self._data_dict['t_valid'][idx]
i += 1
if i >= self._batch_size:
yield batch, i
batch = self._batch_init()
i = 0
if i != 0:
yield batch, i
def gen_test(self):
batch = self._batch_init()
i = 0
for idx in self._idcs_test:
batch['X'][i] = self._data_dict['X_test'][idx]
batch['t'][i] = self._data_dict['t_test'][idx]
i += 1
if i >= self._batch_size:
yield batch, i
batch = self._batch_init()
i = 0
if i != 0:
yield batch, i
def gen_train(self):
batch = self._batch_init()
nb = self._data_dict['Xb_train'].shape[0]
ns = self._data_dict['Xs_train'].shape[0]
iteration = 0
i = 0
while True:
# shuffling all batches
#self._shuffle_train()
for idx in self._idcs_train_s:
idx_b = np.random.randint(0, nb, dtype='int32')
idx_s = np.random.randint(0, ns, dtype='int32')
batch['X'][i] = self._data_dict['Xb_train'][idx_b]
batch['X'][i+1] = self._data_dict['Xs_train'][idx_s]
batch['t'][i] = self._data_dict['tb_train'][idx_b]
batch['t'][i+1] = self._data_dict['ts_train'][idx_s]
i += 2
if i >= self._batch_size:
yield batch
batch = self._batch_init()
i = 0
iteration += 1
if iteration >= self._num_iterations:
break
else:
continue
break
if __name__ == '__main__':
d_train = load_data(1)
for key, value in d_train.iteritems():
print(key, value.shape)
d_test = load_data(1, train=False)
for key, value in d_test.iteritems():
print(key, value.shape)
batch_size = 10
num_features = 64
num_iterations = 10
data_generator = gen_data(split=4, num_iterations=num_iterations, batch_size=batch_size)
tot_batches = []
for batch in data_generator.gen_train():
tot_batches.append(batch)
assert batch['X'].shape == (batch_size, num_features)
assert batch['t'].shape == (batch_size,)
assert len(tot_batches) == num_iterations
sum_idx = 0
for batch, idx in data_generator.gen_valid():
sum_idx += idx
assert batch['X'].shape == (batch_size, num_features)
assert batch['t'].shape == (batch_size,)
assert sum_idx == len(data_generator._idcs_valid)
data_generator = gen_data(split=4, num_iterations=num_iterations,
batch_size=batch_size, train=False)
sum_idx = 0
for batch, idx in data_generator.gen_test():
sum_idx += idx
assert batch['X'].shape == (batch_size, num_features)
assert batch['t'].shape == (batch_size,)
assert sum_idx == len(data_generator._idcs_test)