forked from locuslab/open-unlearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdpo.py
295 lines (244 loc) · 12 KB
/
dpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import os
import gc, json
import pandas as pd
import torch
import wandb
from scipy import stats
import tqdm as notebook_tqdm
import argparse
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig
from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training
from trl import DPOTrainer, SFTTrainer
import bitsandbytes as bnb
from trl import DataCollatorForCompletionOnlyLM
from datasets import load_dataset, Dataset, load_from_disk
from accelerate import FullyShardedDataParallelPlugin, Accelerator
from torch.distributed.fsdp.fully_sharded_data_parallel import FullOptimStateDictConfig, FullStateDictConfig
from transformers import TrainerCallback, TrainerState, TrainerControl, Trainer
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
# Set the environment variable
os.environ["TOKENIZERS_PARALLELISM"] = "false" # to avoid warning "Tokenizer deadlocks"
seed=42
class SavePeftModelCallback(TrainerCallback):
def on_save(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
checkpoint_folder = os.path.join(
args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}")
kwargs["model"].save_pretrained(checkpoint_folder)
pytorch_model_path = os.path.join(checkpoint_folder, "pytorch_model.bin")
torch.save({}, pytorch_model_path)
return control
def find_all_linear_names(model):
cls = torch.nn.Linear
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
return list(lora_module_names)
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
def DPO(input_args):
base_model_id = input_args.model_name_or_path
# from datetime import datetime
# current_time = datetime.now()
# # formatted_time = current_time.strftime("%Y-%m-%d_%H-%M-%S")
# formatted_time = current_time.strftime("%d-%B-%Y")
run_id=input_args.run_id
# iteration=input_args.iteration
wandb.init(project=input_args.run_id)
print(f"############### RUN ID is {run_id}")
# print(f"############### Iteration is {iteration}")
print("############# Model name : ", base_model_id)
#################################### Tokenizer ##############################################
tokenizer = AutoTokenizer.from_pretrained(
base_model_id,
padding_side="right",
add_eos_token=True,
trust_remote_code=False,
)
tokenizer.pad_token = tokenizer.eos_token
print("############# Tokenizer loaded")
####################################### Load Data #########################################
# raw_pref_data_path=input_args.dataset_dir
# model_cache_dir="/project/pi_hongyu_umass_edu/zonghai/clinical-llm-alignment/rishabh/cache-models"
# filter_flag=input_args.filter
datapath=input_args.data_path
print(f"############# Loading Dataset from {datapath}")
data=load_dataset("json", data_files=datapath, split="train")
data=data.train_test_split(test_size=0.1)
train_dataset,eval_dataset=data['train'],data['test']
######################################## Load Model #########################################
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
model = AutoModelForCausalLM.from_pretrained(base_model_id,
# quantization_config=bnb_config,
device_map={"": 0},
use_cache=False,)
model.config.end_token_id = tokenizer.eos_token_id
model.config.pad_token_id = model.config.eos_token_id
model = prepare_model_for_kbit_training(model,use_gradient_checkpointing=False)
print("Model Loaded")
print()
####################################### QLoRA setting #########################################
if input_args.lora_rank:
config = LoraConfig(
r=input_args.lora_rank,
lora_alpha=input_args.lora_alpha,
target_modules=find_all_linear_names(model),
lora_dropout=input_args.lora_dropout,
bias="none",
task_type="CAUSAL_LM"
)
# if input_args.lora_rank != 0:
model = get_peft_model(model, config)
print_trainable_parameters(model)
# --gradient_checkpointing True, workers speed up processing, grad accumulation - 8, 16, 22 (less memory)
# output_dir = f"/project/pi_hongyu_umass_edu/zonghai/clinical-llm-alignment/rishabh/models/{model_name}-{run_id}-sft"
# model_name = 'Mistral-7B-Instruct-v0.2'
output_path = f"{input_args.output_dir}/{run_id}-dpo"
print(f"#### Output path is {output_path}")
# gc.collect()
# torch.cuda.empty_cache()
model_kwargs = dict(
revision="main",
trust_remote_code=False,
use_flash_attention_2=False,
use_cache=False,
device_map={"": 0},
)
####################################### Training Arguments #########################################
args=transformers.TrainingArguments(
# model_init_kwargs=model_kwargs,
output_dir=output_path,
warmup_steps=1,
per_device_train_batch_size=input_args.per_device_train_batch_size,
# per_device_eval_batch_size=input_args.per_device_eval_batch_size,
gradient_accumulation_steps=input_args.gradient_accumulation_steps,
gradient_checkpointing=False,
group_by_length=False,
num_train_epochs=input_args.num_train_epochs,
learning_rate=input_args.learning_rate,
optim="paged_adamw_32bit",
logging_strategy=input_args.logging_strategy,
logging_steps=input_args.log_steps, # When to start reporting loss
save_strategy=input_args.save_strategy,
save_total_limit=2,# Save the model checkpoint every logging step # Save checkpoints every 100 steps
report_to=input_args.report_to, # Comment this out if you don't want to use weights & baises
dataloader_pin_memory=True,
dataloader_num_workers=4,
dataloader_prefetch_factor=1,
logging_first_step=input_args.logging_first_step,
lr_scheduler_type="cosine",
seed=42,
# bf16=True,
fp16=True,
fp16_full_eval=True,
ddp_find_unused_parameters= False,
# tf32=True,
)
####################################### DPO Training #########################################
print("################# DPO Training started")
### DPO Trainer
trainer = DPOTrainer(
model=model,
ref_model=None,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
peft_config=config,
beta=0.5,
max_prompt_length=1024,
max_length=2900
)
print(f"################# DPO Trainer {trainer}")
trainer.train()
print("################# Training is done")
merged_path=f'{output_path}/merged_model'
adapter_path=f'{output_path}/adapters'
# print(f"#### Saving to f{adapter_path}")
# trainer.save_model(output_path)
if input_args.lora_rank:
trainer.model.save_pretrained(adapter_path)
tokenizer.save_pretrained(adapter_path)
print(f"######## Saving adapter to {adapter_path}")
del trainer, model
gc.collect()
torch.cuda.empty_cache()
# # adapter_path=f'/project/pi_hongyu_umass_edu/zonghai/clinical-llm-alignment/rishabh/saved-models/Mistral-7B-Instruct-v0.2-2024-03-18_23-52-22-dpo-m2/final_m2'
# base_model_id=f''
base_model = AutoModelForCausalLM.from_pretrained(
base_model_id,
return_dict=True,
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
# # Merge base model with the adapter
model = PeftModel.from_pretrained(base_model, model_id=f"{adapter_path}")
model = model.merge_and_unload()
model.save_pretrained(merged_path)
tokenizer.save_pretrained(merged_path)
print(f"################# Saving final model at {merged_path}")
# Flush memory
# # Save model and tokenizer
model.save_pretrained(merged_path)
tokenizer.save_pretrained(merged_path)
# # Flush memory
del model, base_model
gc.collect()
torch.cuda.empty_cache()
print(f"####################### Model saved at : {merged_path}")
return
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="DPO Training Arguments")
# parser.add_argument("", type=str, default="", help="Model name or path")
parser.add_argument("--model_name_or_path", type=str, default="/project/pi_hongyu_umass_edu/zonghai/clinical-llm-alignment/rishabh/saved-models/merged_model", help="Model name or path, including Finetuned model")
parser.add_argument("--per_device_train_batch_size", type=int, default=4, help="Training batch size per device")
# parser.add_argument("--per_device_eval_batch_size", type=int, default=4, help="Evaluation batch size per device")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Number of gradient accumulation steps")
parser.add_argument("--learning_rate", type=float, default=5e-6, help="Learning rate")
parser.add_argument("--report_to", type=str, default="wandb", help="Reporting destination")
# parser.add_argument("--run_name", type=str, default="DPO-Training", help="Name of the run")
parser.add_argument("--max_seq_length", type=int, default=1024, help="Maximum Sequence length")
parser.add_argument("--num_train_epochs", type=int, default=2, help="Number of training epochs")
# parser.add_argument("--evaluation_strategy", type=str, default="steps", help="Evaluation strategy")
# parser.add_argument("--eval_steps", type=int, default=500, help="Evaluation steps")
parser.add_argument("--run-id", type=str, default="", help="Run id for labelling folders")
parser.add_argument("--logging_strategy", type=str, default="steps", help="Logging strategy")
parser.add_argument("--log_steps", type=int, default=500, help="Logging steps")
parser.add_argument("--logging_first_step", action="store_true", help="Log the first step")
parser.add_argument("--save_strategy", type=str, default="steps", help="Save strategy")
parser.add_argument("--save_steps", type=int, default=500, help="Save steps")
parser.add_argument("--lora_rank", type=int, default=32, help='Rank in LoRA config')
parser.add_argument("--lora_alpha", type=int, default=16, help='Alpha in LoRA config')
parser.add_argument("--lora_dropout", type=float, default=0.05, help='Dropout in LoRA config')
parser.add_argument("--output_dir", type=str, default="./saved-models/no_name-dpo", help="Output directory")
parser.add_argument("--data-path", type=str, default="/project/pi_hongyu_umass_edu/zonghai/clinical-llm-alignment/rishabh/data/raw_reward_1_2024-03-18_18-28-26", help=" Preference dataset path, must be a json dataset")
# input_args = parser.parse_args([])
# DPO(input_args)
input_args = parser.parse_args()
DPO(input_args)