2022-04-19 10:51:23 INFO i.a.w.w.WorkerRun(call):49 - Executing worker wrapper. Airbyte version: 0.35.30-alpha 2022-04-19 10:51:23 INFO i.a.w.t.TemporalAttemptExecution(get):105 - Docker volume job log path: /tmp/workspace/37/0/logs.log 2022-04-19 10:51:23 INFO i.a.w.t.TemporalAttemptExecution(get):110 - Executing worker wrapper. Airbyte version: 0.35.30-alpha 2022-04-19 10:51:23 INFO i.a.w.DefaultReplicationWorker(run):103 - start sync worker. job id: 37 attempt id: 0 2022-04-19 10:51:23 INFO i.a.w.DefaultReplicationWorker(run):115 - configured sync modes: {null.tickets=incremental - append_dedup, null.sla_policies=full_refresh - append, null.brands=full_refresh - append, null.ticket_fields=incremental - append_dedup, null.ticket_metric_events=incremental - append_dedup, null.ticket_metrics=incremental - append_dedup, null.tags=full_refresh - append} 2022-04-19 10:51:23 INFO i.a.w.p.a.DefaultAirbyteDestination(start):69 - Running destination... 2022-04-19 10:51:23 INFO i.a.c.i.LineGobbler(voidCall):82 - Checking if airbyte/destination-redshift:0.3.28 exists... 2022-04-19 10:51:24 INFO i.a.c.i.LineGobbler(voidCall):82 - airbyte/destination-redshift:0.3.28 was found locally. 2022-04-19 10:51:24 INFO i.a.w.p.DockerProcessFactory(create):157 - Preparing command: docker run --rm --init -i -w /data/37/0 --log-driver none --network host -v airbyte_workspace:/data -v /tmp/airbyte_local:/local airbyte/destination-redshift:0.3.28 write --config destination_config.json --catalog destination_catalog.json 2022-04-19 10:51:24 INFO i.a.c.i.LineGobbler(voidCall):82 - Checking if airbyte/source-zendesk-support:0.2.5 exists... 2022-04-19 10:51:24 INFO i.a.c.i.LineGobbler(voidCall):82 - airbyte/source-zendesk-support:0.2.5 was found locally. 2022-04-19 10:51:24 INFO i.a.w.p.DockerProcessFactory(create):157 - Preparing command: docker run --rm --init -i -w /data/37/0 --log-driver none --network host -v airbyte_workspace:/data -v /tmp/airbyte_local:/local airbyte/source-zendesk-support:0.2.5 read --config source_config.json --catalog source_catalog.json --state input_state.json 2022-04-19 10:51:24 INFO i.a.w.DefaultReplicationWorker(run):157 - Waiting for source and destination threads to complete. 2022-04-19 10:51:24 INFO i.a.w.DefaultReplicationWorker(lambda$getDestinationOutputRunnable$6):337 - Destination output thread started. 2022-04-19 10:51:24 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):278 - Replication thread started. 2022-04-19 10:51:25 destination > SLF4J: Class path contains multiple SLF4J bindings. 2022-04-19 10:51:25 destination > SLF4J: Found binding in [jar:file:/airbyte/lib/log4j-slf4j-impl-2.17.1.jar!/org/slf4j/impl/StaticLoggerBinder.class] 2022-04-19 10:51:25 destination > SLF4J: Found binding in [jar:file:/airbyte/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class] 2022-04-19 10:51:25 destination > SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. 2022-04-19 10:51:25 destination > SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory] 2022-04-19 10:51:26 source > Starting syncing SourceZendeskSupport 2022-04-19 10:51:26 source > Syncing stream: brands 2022-04-19 10:51:26 source > Read 12 records from brands stream 2022-04-19 10:51:26 source > Finished syncing brands 2022-04-19 10:51:26 source > SourceZendeskSupport runtimes: Syncing stream brands 0:00:00.375589 2022-04-19 10:51:26 source > Syncing stream: sla_policies 2022-04-19 10:51:26 source > Read 11 records from sla_policies stream 2022-04-19 10:51:26 source > Finished syncing sla_policies 2022-04-19 10:51:26 source > SourceZendeskSupport runtimes: Syncing stream brands 0:00:00.375589 Syncing stream sla_policies 0:00:00.205593 2022-04-19 10:51:26 source > Syncing stream: tags 2022-04-19 10:51:27 source > Read 196 records from tags stream 2022-04-19 10:51:27 source > Finished syncing tags 2022-04-19 10:51:27 source > SourceZendeskSupport runtimes: Syncing stream brands 0:00:00.375589 Syncing stream sla_policies 0:00:00.205593 Syncing stream tags 0:00:00.420369 2022-04-19 10:51:27 source > Syncing stream: ticket_fields 2022-04-19 10:51:27 destination > 2022-04-19 10:51:27 INFO i.a.i.d.r.RedshiftDestination(main):77 - starting destination: class io.airbyte.integrations.destination.redshift.RedshiftDestination 2022-04-19 10:51:27 source > Read 14 records from ticket_fields stream 2022-04-19 10:51:27 source > Finished syncing ticket_fields 2022-04-19 10:51:27 source > SourceZendeskSupport runtimes: Syncing stream brands 0:00:00.375589 Syncing stream sla_policies 0:00:00.205593 Syncing stream tags 0:00:00.420369 Syncing stream ticket_fields 0:00:00.389495 2022-04-19 10:51:27 source > Syncing stream: ticket_metric_events 2022-04-19 10:51:27 destination > 2022-04-19 10:51:27 INFO i.a.i.b.IntegrationCliParser(parseOptions):118 - integration args: {catalog=destination_catalog.json, write=null, config=destination_config.json} 2022-04-19 10:51:27 destination > 2022-04-19 10:51:27 INFO i.a.i.b.IntegrationRunner(runInternal):121 - Running integration: io.airbyte.integrations.destination.redshift.RedshiftDestination 2022-04-19 10:51:27 destination > 2022-04-19 10:51:27 INFO i.a.i.b.IntegrationRunner(runInternal):122 - Command: WRITE 2022-04-19 10:51:27 destination > 2022-04-19 10:51:27 INFO i.a.i.b.IntegrationRunner(runInternal):123 - Integration config: IntegrationConfig{command=WRITE, configPath='destination_config.json', catalogPath='destination_catalog.json', statePath='null'} 2022-04-19 10:51:28 destination > 2022-04-19 10:51:28 WARN c.n.s.JsonMetaSchema(newValidator):338 - Unknown keyword examples - you should define your own Meta Schema. If the keyword is irrelevant for validation, just use a NonValidationKeyword 2022-04-19 10:51:28 destination > 2022-04-19 10:51:28 WARN c.n.s.JsonMetaSchema(newValidator):338 - Unknown keyword airbyte_secret - you should define your own Meta Schema. If the keyword is irrelevant for validation, just use a NonValidationKeyword 2022-04-19 10:51:28 destination > 2022-04-19 10:51:28 INFO i.a.i.d.j.c.SwitchingDestination(getConsumer):65 - Using destination type: COPY_S3 2022-04-19 10:51:28 destination > 2022-04-19 10:51:28 INFO i.a.i.d.s.S3DestinationConfig(createS3Client):169 - Creating S3 client... 2022-04-19 10:51:29 destination > 2022-04-19 10:51:29 INFO i.a.i.d.b.BufferedStreamConsumer(startTracked):141 - class io.airbyte.integrations.destination.buffered_stream_consumer.BufferedStreamConsumer started. 2022-04-19 10:51:29 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 1000 2022-04-19 10:51:29 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 2000 2022-04-19 10:51:30 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 3000 2022-04-19 10:51:30 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 4000 2022-04-19 10:51:30 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 5000 2022-04-19 10:51:31 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 6000 2022-04-19 10:51:31 source > Read 6084 records from ticket_metric_events stream 2022-04-19 10:51:31 source > Finished syncing ticket_metric_events 2022-04-19 10:51:31 source > SourceZendeskSupport runtimes: Syncing stream brands 0:00:00.375589 Syncing stream sla_policies 0:00:00.205593 Syncing stream tags 0:00:00.420369 Syncing stream ticket_fields 0:00:00.389495 Syncing stream ticket_metric_events 0:00:03.860808 2022-04-19 10:51:31 source > Syncing stream: ticket_metrics 2022-04-19 10:51:33 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 7000 2022-04-19 10:51:34 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 8000 2022-04-19 10:51:35 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 9000 2022-04-19 10:51:36 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 10000 2022-04-19 10:51:38 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 11000 2022-04-19 10:51:39 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 12000 2022-04-19 10:51:40 destination > 2022-04-19 10:51:40 INFO i.a.i.d.b.BufferedStreamConsumer(flushQueueToDestination):181 - Flushing buffer: 26211448 bytes 2022-04-19 10:51:40 destination > 2022-04-19 10:51:40 INFO i.a.i.d.b.BufferedStreamConsumer(lambda$flushQueueToDestination$1):185 - Flushing brands: 12 records 2022-04-19 10:51:40 destination > 2022-04-19 10:51:40 INFO i.a.i.d.j.c.s.S3StreamCopier(prepareStagingFile):95 - S3 upload part size: 10 MB 2022-04-19 10:51:40 destination > 2022-04-19 10:51:40 INFO i.a.i.d.s.c.S3CsvWriter():58 - Full S3 path for stream 'brands': s3://travlrdatatesting/airbyte_data/brands/2022_04_19_1650365489228_9dc06c5f-d8a7-4901-b41d-a9c8e16df070.csv 2022-04-19 10:51:40 destination > 2022-04-19 10:51:40 INFO i.a.i.d.s.u.S3StreamTransferManagerHelper(getDefault):55 - PartSize arg is set to 10 MB 2022-04-19 10:51:41 destination > 2022-04-19 10:51:41 INFO a.m.s.StreamTransferManager(getMultiPartOutputStreams):329 - Initiated multipart upload to travlrdatatesting/airbyte_data/brands/2022_04_19_1650365489228_9dc06c5f-d8a7-4901-b41d-a9c8e16df070.csv with full ID zgP5ZcAshP46IQKgRJOEzz3beo5dDDUzfbR4CJXmzQQ35TlHNG_uwYhctYK3Ajj5.q9TGjfAEoHZ4bp8zvZQkET6G_c92t5hDdvQcTDWcpJflGgIZ_ovQwpeSVi3bc.8OSms14eDv_ehZkeojN7UxA-- 2022-04-19 10:51:41 destination > 2022-04-19 10:51:41 INFO i.a.i.d.b.BufferedStreamConsumer(lambda$flushQueueToDestination$1):185 - Flushing sla_policies: 11 records 2022-04-19 10:51:41 destination > 2022-04-19 10:51:41 INFO i.a.i.d.j.c.s.S3StreamCopier(prepareStagingFile):95 - S3 upload part size: 10 MB 2022-04-19 10:51:41 destination > 2022-04-19 10:51:41 INFO i.a.i.d.s.c.S3CsvWriter():58 - Full S3 path for stream 'sla_policies': s3://travlrdatatesting/airbyte_data/sla_policies/2022_04_19_1650365489230_b4ec8c47-505c-4324-b71d-383b700bcbc5.csv 2022-04-19 10:51:41 destination > 2022-04-19 10:51:41 INFO i.a.i.d.s.u.S3StreamTransferManagerHelper(getDefault):55 - PartSize arg is set to 10 MB 2022-04-19 10:51:41 destination > 2022-04-19 10:51:41 INFO a.m.s.StreamTransferManager(getMultiPartOutputStreams):329 - Initiated multipart upload to travlrdatatesting/airbyte_data/sla_policies/2022_04_19_1650365489230_b4ec8c47-505c-4324-b71d-383b700bcbc5.csv with full ID G0Ap2L3wiOdjIn_DFwC8bfTqx8TNhtwQs5hlHl8W1.Gpztzy5DDcF2EQYREz.2Uu5O6_KXL.i_RDfbsx3TQ0oCeD_X3J6lT7_pO2Fv6Q_wl6XHviWBwT6CqIJ.8._QqI82fkrQB.FG6AOrDrP7HD2A-- 2022-04-19 10:51:41 destination > 2022-04-19 10:51:41 INFO i.a.i.d.b.BufferedStreamConsumer(lambda$flushQueueToDestination$1):185 - Flushing ticket_metrics: 6129 records 2022-04-19 10:51:41 destination > 2022-04-19 10:51:41 INFO i.a.i.d.j.c.s.S3StreamCopier(prepareStagingFile):95 - S3 upload part size: 10 MB 2022-04-19 10:51:41 destination > 2022-04-19 10:51:41 INFO i.a.i.d.s.c.S3CsvWriter():58 - Full S3 path for stream 'ticket_metrics': s3://travlrdatatesting/airbyte_data/ticket_metrics/2022_04_19_1650365489231_3834c0e3-6f70-4716-9b22-01ea5c83901e.csv 2022-04-19 10:51:41 destination > 2022-04-19 10:51:41 INFO i.a.i.d.s.u.S3StreamTransferManagerHelper(getDefault):55 - PartSize arg is set to 10 MB 2022-04-19 10:51:41 destination > 2022-04-19 10:51:41 INFO a.m.s.StreamTransferManager(getMultiPartOutputStreams):329 - Initiated multipart upload to travlrdatatesting/airbyte_data/ticket_metrics/2022_04_19_1650365489231_3834c0e3-6f70-4716-9b22-01ea5c83901e.csv with full ID FDfzzvyL82moUTZU.Squ7htUskVKi8BecBYkN59Xqm_jz9.29gCJyazZRA9nUH5PHES9X_2PAE13B.iB5VxUv.hnI_zpa5T7UZ0oTDDcjpkXlBoyOEkGF12fgiAbHZuAUaYwl91KFfEvHcqFBbgxnw-- 2022-04-19 10:51:42 destination > 2022-04-19 10:51:42 INFO i.a.i.d.b.BufferedStreamConsumer(lambda$flushQueueToDestination$1):185 - Flushing ticket_metric_events: 6084 records 2022-04-19 10:51:42 destination > 2022-04-19 10:51:42 INFO i.a.i.d.j.c.s.S3StreamCopier(prepareStagingFile):95 - S3 upload part size: 10 MB 2022-04-19 10:51:42 destination > 2022-04-19 10:51:42 INFO i.a.i.d.s.c.S3CsvWriter():58 - Full S3 path for stream 'ticket_metric_events': s3://travlrdatatesting/airbyte_data/ticket_metric_events/2022_04_19_1650365489231_dec743cb-f6b0-4fac-8244-152444fd5a6d.csv 2022-04-19 10:51:42 destination > 2022-04-19 10:51:42 INFO i.a.i.d.s.u.S3StreamTransferManagerHelper(getDefault):55 - PartSize arg is set to 10 MB 2022-04-19 10:51:43 destination > 2022-04-19 10:51:43 INFO a.m.s.StreamTransferManager(getMultiPartOutputStreams):329 - Initiated multipart upload to travlrdatatesting/airbyte_data/ticket_metric_events/2022_04_19_1650365489231_dec743cb-f6b0-4fac-8244-152444fd5a6d.csv with full ID 2RaWFw_1RfSi44HR_5_AUpHGJOvTAFHk9wGNkziBnrgT.EBzE1_hjIkCkPnTra4eSARfJs3Vgcl.tUpqsZJ7IiOvWaFG_eLxNTu1YtgUaf.DlW_LKOG67Nmz.h3SffkMaCz5FxpN0m.7sAyWC2H2Jg-- 2022-04-19 10:51:43 destination > 2022-04-19 10:51:43 INFO i.a.i.d.b.BufferedStreamConsumer(lambda$flushQueueToDestination$1):185 - Flushing tags: 196 records 2022-04-19 10:51:43 destination > 2022-04-19 10:51:43 INFO i.a.i.d.j.c.s.S3StreamCopier(prepareStagingFile):95 - S3 upload part size: 10 MB 2022-04-19 10:51:43 destination > 2022-04-19 10:51:43 INFO i.a.i.d.s.c.S3CsvWriter():58 - Full S3 path for stream 'tags': s3://travlrdatatesting/airbyte_data/tags/2022_04_19_1650365489230_ddd5b656-ef4f-4aa1-90e1-9b4e351289a9.csv 2022-04-19 10:51:43 destination > 2022-04-19 10:51:43 INFO i.a.i.d.s.u.S3StreamTransferManagerHelper(getDefault):55 - PartSize arg is set to 10 MB 2022-04-19 10:51:43 destination > 2022-04-19 10:51:43 INFO a.m.s.StreamTransferManager(getMultiPartOutputStreams):329 - Initiated multipart upload to travlrdatatesting/airbyte_data/tags/2022_04_19_1650365489230_ddd5b656-ef4f-4aa1-90e1-9b4e351289a9.csv with full ID sI6BWXhW1gV8WHJ4n0F7zVvOI6A8QQ.ztyTfuijDOIujgo_baEa4j_FU.Vu941RgBXNVmO3viXMRYmEPrNk6zkZtkgqtRjCMnuOjBOuT5GKMe8NIqfsYPyqCxt3XlN5i.Zfi7ys8_QcF6DBhYibb5g-- 2022-04-19 10:51:43 destination > 2022-04-19 10:51:43 INFO i.a.i.d.b.BufferedStreamConsumer(lambda$flushQueueToDestination$1):185 - Flushing ticket_fields: 14 records 2022-04-19 10:51:43 destination > 2022-04-19 10:51:43 INFO i.a.i.d.j.c.s.S3StreamCopier(prepareStagingFile):95 - S3 upload part size: 10 MB 2022-04-19 10:51:43 destination > 2022-04-19 10:51:43 INFO i.a.i.d.s.c.S3CsvWriter():58 - Full S3 path for stream 'ticket_fields': s3://travlrdatatesting/airbyte_data/ticket_fields/2022_04_19_1650365489230_b6d71c3d-1fd6-4c31-8899-d726045b84f2.csv 2022-04-19 10:51:43 destination > 2022-04-19 10:51:43 INFO i.a.i.d.s.u.S3StreamTransferManagerHelper(getDefault):55 - PartSize arg is set to 10 MB 2022-04-19 10:51:43 destination > 2022-04-19 10:51:43 INFO a.m.s.StreamTransferManager(getMultiPartOutputStreams):329 - Initiated multipart upload to travlrdatatesting/airbyte_data/ticket_fields/2022_04_19_1650365489230_b6d71c3d-1fd6-4c31-8899-d726045b84f2.csv with full ID RnquPRcCjT07TZfnyFAEmgCQi0PUtnnWsycMxFZsSHBXcfK6iepxROxm1D1FZuc7frm7H0VWUSBjYHj081RpH.cSffwKlT6SYPrexuhWEe0R8AemNtAdIxuYyLCAvm0HjhZUrhl.YQkjvFfh7PMoHQ-- 2022-04-19 10:51:43 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 13000 2022-04-19 10:51:43 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 14000 2022-04-19 10:51:44 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 15000 2022-04-19 10:51:52 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 16000 2022-04-19 10:52:09 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 17000 2022-04-19 10:52:17 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 18000 2022-04-19 10:52:27 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 19000 2022-04-19 10:52:33 destination > 2022-04-19 10:52:33 INFO i.a.i.d.b.BufferedStreamConsumer(flushQueueToDestination):181 - Flushing buffer: 26213738 bytes 2022-04-19 10:52:33 destination > 2022-04-19 10:52:33 INFO i.a.i.d.b.BufferedStreamConsumer(lambda$flushQueueToDestination$1):185 - Flushing ticket_metrics: 7196 records 2022-04-19 10:52:35 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 20000 2022-04-19 10:52:44 INFO i.a.w.DefaultReplicationWorker(lambda$getReplicationRunnable$5):300 - Records read: 21000 2022-04-19 13:13:15 source > Encountered an exception while reading stream ticket_metrics Traceback (most recent call last): File "/usr/local/lib/python3.7/site-packages/urllib3/connectionpool.py", line 710, in urlopen chunked=chunked, File "/usr/local/lib/python3.7/site-packages/urllib3/connectionpool.py", line 449, in _make_request six.raise_from(e, None) File "", line 3, in raise_from File "/usr/local/lib/python3.7/site-packages/urllib3/connectionpool.py", line 444, in _make_request httplib_response = conn.getresponse() File "/usr/local/lib/python3.7/http/client.py", line 1373, in getresponse response.begin() File "/usr/local/lib/python3.7/http/client.py", line 319, in begin version, status, reason = self._read_status() File "/usr/local/lib/python3.7/http/client.py", line 280, in _read_status line = str(self.fp.readline(_MAXLINE + 1), "iso-8859-1") File "/usr/local/lib/python3.7/socket.py", line 589, in readinto return self._sock.recv_into(b) File "/usr/local/lib/python3.7/ssl.py", line 1071, in recv_into return self.read(nbytes, buffer) File "/usr/local/lib/python3.7/ssl.py", line 929, in read return self._sslobj.read(len, buffer) ConnectionResetError: [Errno 104] Connection reset by peer During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.7/site-packages/requests/adapters.py", line 450, in send timeout=timeout File "/usr/local/lib/python3.7/site-packages/urllib3/connectionpool.py", line 786, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/usr/local/lib/python3.7/site-packages/urllib3/util/retry.py", line 550, in increment raise six.reraise(type(error), error, _stacktrace) File "/usr/local/lib/python3.7/site-packages/urllib3/packages/six.py", line 769, in reraise raise value.with_traceback(tb) File "/usr/local/lib/python3.7/site-packages/urllib3/connectionpool.py", line 710, in urlopen chunked=chunked, File "/usr/local/lib/python3.7/site-packages/urllib3/connectionpool.py", line 449, in _make_request six.raise_from(e, None) File "", line 3, in raise_from File "/usr/local/lib/python3.7/site-packages/urllib3/connectionpool.py", line 444, in _make_request httplib_response = conn.getresponse() File "/usr/local/lib/python3.7/http/client.py", line 1373, in getresponse response.begin() File "/usr/local/lib/python3.7/http/client.py", line 319, in begin version, status, reason = self._read_status() File "/usr/local/lib/python3.7/http/client.py", line 280, in _read_status line = str(self.fp.readline(_MAXLINE + 1), "iso-8859-1") File "/usr/local/lib/python3.7/socket.py", line 589, in readinto return self._sock.recv_into(b) File "/usr/local/lib/python3.7/ssl.py", line 1071, in recv_into return self.read(nbytes, buffer) File "/usr/local/lib/python3.7/ssl.py", line 929, in read return self._sslobj.read(len, buffer) urllib3.exceptions.ProtocolError: ('Connection aborted.', ConnectionResetError(104, 'Connection reset by peer')) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.7/site-packages/airbyte_cdk/sources/abstract_source.py", line 119, in read internal_config=internal_config, File "/usr/local/lib/python3.7/site-packages/airbyte_cdk/sources/abstract_source.py", line 159, in _read_stream for record in record_iterator: File "/usr/local/lib/python3.7/site-packages/airbyte_cdk/sources/abstract_source.py", line 215, in _read_incremental for record_counter, record_data in enumerate(records, start=1): File "/airbyte/integration_code/source_zendesk_support/streams.py", line 267, in read_records response = item["future"].result() File "/usr/local/lib/python3.7/concurrent/futures/_base.py", line 428, in result return self.__get_result() File "/usr/local/lib/python3.7/concurrent/futures/_base.py", line 384, in __get_result raise self._exception File "/usr/local/lib/python3.7/concurrent/futures/thread.py", line 57, in run result = self.fn(*self.args, **self.kwargs) File "/usr/local/lib/python3.7/site-packages/requests/sessions.py", line 645, in send r = adapter.send(request, **kwargs) File "/usr/local/lib/python3.7/site-packages/requests/adapters.py", line 501, in send raise ConnectionError(err, request=request) requests.exceptions.ConnectionError: ('Connection aborted.', ConnectionResetError(104, 'Connection reset by peer')) 2022-04-19 13:13:15 source > Finished syncing ticket_metrics 2022-04-19 13:13:15 source > SourceZendeskSupport runtimes: Syncing stream brands 0:00:00.375589 Syncing stream sla_policies 0:00:00.205593 Syncing stream tags 0:00:00.420369 Syncing stream ticket_fields 0:00:00.389495 Syncing stream ticket_metric_events 0:00:03.860808 Syncing stream ticket_metrics 2:21:44.470708 2022-04-19 13:13:15 source > ('Connection aborted.', ConnectionResetError(104, 'Connection reset by peer')) Traceback (most recent call last): File "/usr/local/lib/python3.7/site-packages/urllib3/connectionpool.py", line 710, in urlopen chunked=chunked, File "/usr/local/lib/python3.7/site-packages/urllib3/connectionpool.py", line 449, in _make_request six.raise_from(e, None) File "", line 3, in raise_from File "/usr/local/lib/python3.7/site-packages/urllib3/connectionpool.py", line 444, in _make_request httplib_response = conn.getresponse() File "/usr/local/lib/python3.7/http/client.py", line 1373, in getresponse response.begin() File "/usr/local/lib/python3.7/http/client.py", line 319, in begin version, status, reason = self._read_status() File "/usr/local/lib/python3.7/http/client.py", line 280, in _read_status line = str(self.fp.readline(_MAXLINE + 1), "iso-8859-1") File "/usr/local/lib/python3.7/socket.py", line 589, in readinto return self._sock.recv_into(b) File "/usr/local/lib/python3.7/ssl.py", line 1071, in recv_into return self.read(nbytes, buffer) File "/usr/local/lib/python3.7/ssl.py", line 929, in read return self._sslobj.read(len, buffer) ConnectionResetError: [Errno 104] Connection reset by peer During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.7/site-packages/requests/adapters.py", line 450, in send timeout=timeout File "/usr/local/lib/python3.7/site-packages/urllib3/connectionpool.py", line 786, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/usr/local/lib/python3.7/site-packages/urllib3/util/retry.py", line 550, in increment raise six.reraise(type(error), error, _stacktrace) File "/usr/local/lib/python3.7/site-packages/urllib3/packages/six.py", line 769, in reraise raise value.with_traceback(tb) File "/usr/local/lib/python3.7/site-packages/urllib3/connectionpool.py", line 710, in urlopen chunked=chunked, File "/usr/local/lib/python3.7/site-packages/urllib3/connectionpool.py", line 449, in _make_request six.raise_from(e, None) File "", line 3, in raise_from File "/usr/local/lib/python3.7/site-packages/urllib3/connectionpool.py", line 444, in _make_request httplib_response = conn.getresponse() File "/usr/local/lib/python3.7/http/client.py", line 1373, in getresponse response.begin() File "/usr/local/lib/python3.7/http/client.py", line 319, in begin version, status, reason = self._read_status() File "/usr/local/lib/python3.7/http/client.py", line 280, in _read_status line = str(self.fp.readline(_MAXLINE + 1), "iso-8859-1") File "/usr/local/lib/python3.7/socket.py", line 589, in readinto return self._sock.recv_into(b) File "/usr/local/lib/python3.7/ssl.py", line 1071, in recv_into return self.read(nbytes, buffer) File "/usr/local/lib/python3.7/ssl.py", line 929, in read return self._sslobj.read(len, buffer) urllib3.exceptions.ProtocolError: ('Connection aborted.', ConnectionResetError(104, 'Connection reset by peer')) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/airbyte/integration_code/main.py", line 13, in launch(source, sys.argv[1:]) File "/usr/local/lib/python3.7/site-packages/airbyte_cdk/entrypoint.py", line 127, in launch for message in source_entrypoint.run(parsed_args): File "/usr/local/lib/python3.7/site-packages/airbyte_cdk/entrypoint.py", line 118, in run for message in generator: File "/usr/local/lib/python3.7/site-packages/airbyte_cdk/sources/abstract_source.py", line 123, in read raise e File "/usr/local/lib/python3.7/site-packages/airbyte_cdk/sources/abstract_source.py", line 119, in read internal_config=internal_config, File "/usr/local/lib/python3.7/site-packages/airbyte_cdk/sources/abstract_source.py", line 159, in _read_stream for record in record_iterator: File "/usr/local/lib/python3.7/site-packages/airbyte_cdk/sources/abstract_source.py", line 215, in _read_incremental for record_counter, record_data in enumerate(records, start=1): File "/airbyte/integration_code/source_zendesk_support/streams.py", line 267, in read_records response = item["future"].result() File "/usr/local/lib/python3.7/concurrent/futures/_base.py", line 428, in result return self.__get_result() File "/usr/local/lib/python3.7/concurrent/futures/_base.py", line 384, in __get_result raise self._exception File "/usr/local/lib/python3.7/concurrent/futures/thread.py", line 57, in run result = self.fn(*self.args, **self.kwargs) File "/usr/local/lib/python3.7/site-packages/requests/sessions.py", line 645, in send r = adapter.send(request, **kwargs) File "/usr/local/lib/python3.7/site-packages/requests/adapters.py", line 501, in send raise ConnectionError(err, request=request) requests.exceptions.ConnectionError: ('Connection aborted.', ConnectionResetError(104, 'Connection reset by peer')) 2022-04-19 13:13:17 destination > 2022-04-19 13:13:17 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):229 - The main thread is exiting while children non-daemon threads from a connector are still active. 2022-04-19 13:13:17 destination > Ideally, this situation should not happen... 2022-04-19 13:13:17 destination > Please check with maintainers if the connector or library code should safely clean up its threads before quitting instead. 2022-04-19 13:13:17 destination > The main thread is: main (RUNNABLE) 2022-04-19 13:13:17 destination > Thread stacktrace: java.base/java.lang.Thread.getStackTrace(Thread.java:1610) 2022-04-19 13:13:17 destination > at io.airbyte.integrations.base.IntegrationRunner.dumpThread(IntegrationRunner.java:264) 2022-04-19 13:13:17 destination > at io.airbyte.integrations.base.IntegrationRunner.watchForOrphanThreads(IntegrationRunner.java:233) 2022-04-19 13:13:17 destination > at io.airbyte.integrations.base.IntegrationRunner.runConsumer(IntegrationRunner.java:190) 2022-04-19 13:13:17 destination > at io.airbyte.integrations.base.IntegrationRunner.lambda$runInternal$1(IntegrationRunner.java:163) 2022-04-19 13:13:17 destination > at io.airbyte.integrations.base.sentry.AirbyteSentry.executeWithTracing(AirbyteSentry.java:54) 2022-04-19 13:13:17 destination > at io.airbyte.integrations.base.sentry.AirbyteSentry.executeWithTracing(AirbyteSentry.java:38) 2022-04-19 13:13:17 destination > at io.airbyte.integrations.base.IntegrationRunner.runInternal(IntegrationRunner.java:163) 2022-04-19 13:13:17 destination > at io.airbyte.integrations.base.IntegrationRunner.run(IntegrationRunner.java:105) 2022-04-19 13:13:17 destination > at io.airbyte.integrations.destination.redshift.RedshiftDestination.main(RedshiftDestination.java:78) 2022-04-19 13:13:17 destination > 2022-04-19 13:13:17 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-2-thread-1 (WAITING) 2022-04-19 13:13:17 destination > Thread stacktrace: java.base@17.0.1/jdk.internal.misc.Unsafe.park(Native Method) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.locks.LockSupport.park(LockSupport.java:341) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionNode.block(AbstractQueuedSynchronizer.java:506) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.ForkJoinPool.unmanagedBlock(ForkJoinPool.java:3463) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.ForkJoinPool.managedBlock(ForkJoinPool.java:3434) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:1623) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.ArrayBlockingQueue.take(ArrayBlockingQueue.java:420) 2022-04-19 13:13:17 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:484) 2022-04-19 13:13:17 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:17 destination > 2022-04-19 13:13:17 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-2-thread-2 (BLOCKED) 2022-04-19 13:13:17 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:17 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:17 destination > 2022-04-19 13:13:17 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-2-thread-3 (BLOCKED) 2022-04-19 13:13:17 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:17 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:17 destination > 2022-04-19 13:13:17 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-2-thread-4 (BLOCKED) 2022-04-19 13:13:17 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:17 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:17 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-2-thread-5 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-2-thread-6 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-2-thread-7 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-2-thread-8 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-2-thread-9 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-2-thread-10 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-3-thread-1 (WAITING) 2022-04-19 13:13:18 destination > Thread stacktrace: java.base@17.0.1/jdk.internal.misc.Unsafe.park(Native Method) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.locks.LockSupport.park(LockSupport.java:341) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionNode.block(AbstractQueuedSynchronizer.java:506) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ForkJoinPool.unmanagedBlock(ForkJoinPool.java:3463) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ForkJoinPool.managedBlock(ForkJoinPool.java:3434) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:1623) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ArrayBlockingQueue.take(ArrayBlockingQueue.java:420) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:484) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-3-thread-2 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-3-thread-3 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-3-thread-4 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-3-thread-5 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-3-thread-6 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-3-thread-7 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-3-thread-8 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-3-thread-9 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-3-thread-10 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-4-thread-1 (WAITING) 2022-04-19 13:13:18 destination > Thread stacktrace: java.base@17.0.1/jdk.internal.misc.Unsafe.park(Native Method) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.locks.LockSupport.park(LockSupport.java:341) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionNode.block(AbstractQueuedSynchronizer.java:506) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ForkJoinPool.unmanagedBlock(ForkJoinPool.java:3463) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ForkJoinPool.managedBlock(ForkJoinPool.java:3434) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:1623) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ArrayBlockingQueue.take(ArrayBlockingQueue.java:420) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:484) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-4-thread-2 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-4-thread-3 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-4-thread-4 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-4-thread-5 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-4-thread-6 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-4-thread-7 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-4-thread-8 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-4-thread-9 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-4-thread-10 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-5-thread-1 (WAITING) 2022-04-19 13:13:18 destination > Thread stacktrace: java.base@17.0.1/jdk.internal.misc.Unsafe.park(Native Method) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.locks.LockSupport.park(LockSupport.java:341) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionNode.block(AbstractQueuedSynchronizer.java:506) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ForkJoinPool.unmanagedBlock(ForkJoinPool.java:3463) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ForkJoinPool.managedBlock(ForkJoinPool.java:3434) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:1623) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ArrayBlockingQueue.take(ArrayBlockingQueue.java:420) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:484) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-5-thread-2 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-5-thread-3 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-5-thread-4 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-5-thread-5 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-5-thread-6 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-5-thread-7 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-5-thread-8 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-5-thread-9 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-5-thread-10 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-6-thread-1 (WAITING) 2022-04-19 13:13:18 destination > Thread stacktrace: java.base@17.0.1/jdk.internal.misc.Unsafe.park(Native Method) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.locks.LockSupport.park(LockSupport.java:341) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionNode.block(AbstractQueuedSynchronizer.java:506) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ForkJoinPool.unmanagedBlock(ForkJoinPool.java:3463) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ForkJoinPool.managedBlock(ForkJoinPool.java:3434) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:1623) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ArrayBlockingQueue.take(ArrayBlockingQueue.java:420) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:484) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-6-thread-2 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-6-thread-3 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-6-thread-4 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-6-thread-5 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-6-thread-6 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-6-thread-7 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-6-thread-8 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-6-thread-9 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-6-thread-10 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-7-thread-1 (WAITING) 2022-04-19 13:13:18 destination > Thread stacktrace: java.base@17.0.1/jdk.internal.misc.Unsafe.park(Native Method) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.locks.LockSupport.park(LockSupport.java:341) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionNode.block(AbstractQueuedSynchronizer.java:506) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ForkJoinPool.unmanagedBlock(ForkJoinPool.java:3463) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ForkJoinPool.managedBlock(ForkJoinPool.java:3434) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:1623) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ArrayBlockingQueue.take(ArrayBlockingQueue.java:420) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:484) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-7-thread-2 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-7-thread-3 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-7-thread-4 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-7-thread-5 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:18 destination > 2022-04-19 13:13:18 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-7-thread-6 (BLOCKED) 2022-04-19 13:13:18 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:18 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:18 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:19 destination > 2022-04-19 13:13:19 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-7-thread-7 (BLOCKED) 2022-04-19 13:13:19 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:19 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:19 destination > 2022-04-19 13:13:19 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-7-thread-8 (BLOCKED) 2022-04-19 13:13:19 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:19 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:19 destination > 2022-04-19 13:13:19 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-7-thread-9 (BLOCKED) 2022-04-19 13:13:19 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:19 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:19 destination > 2022-04-19 13:13:19 WARN i.a.i.b.IntegrationRunner(watchForOrphanThreads):243 - Active non-daemon thread: pool-7-thread-10 (BLOCKED) 2022-04-19 13:13:19 destination > Thread stacktrace: app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:483) 2022-04-19 13:13:19 destination > at app//alex.mojaki.s3upload.StreamTransferManager$UploadTask.call(StreamTransferManager.java:474) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.FutureTask.run(FutureTask.java:264) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) 2022-04-19 13:13:19 destination > at java.base@17.0.1/java.lang.Thread.run(Thread.java:833) 2022-04-19 13:13:19 destination > 2022-04-19 13:13:19 INFO i.a.i.b.FailureTrackingAirbyteMessageConsumer(close):65 - Airbyte message consumer: succeeded. 2022-04-19 13:13:19 destination > 2022-04-19 13:13:19 INFO i.a.i.d.b.BufferedStreamConsumer(close):217 - executing on success close procedure. 2022-04-19 13:13:19 destination > 2022-04-19 13:13:19 INFO i.a.i.d.b.BufferedStreamConsumer(flushQueueToDestination):181 - Flushing buffer: 5285678 bytes 2022-04-19 13:13:19 destination > 2022-04-19 13:13:19 INFO i.a.i.d.b.BufferedStreamConsumer(lambda$flushQueueToDestination$1):185 - Flushing ticket_metrics: 1451 records 2022-04-19 13:13:19 destination > 2022-04-19 13:13:19 INFO i.a.i.d.s.w.BaseS3Writer(close):113 - Uploading remaining data for stream 'brands'. 2022-04-19 13:13:19 destination > 2022-04-19 13:13:19 INFO a.m.s.MultiPartOutputStream(close):158 - Called close() on [MultipartOutputStream for parts 1 - 10000] 2022-04-19 13:13:19 destination > 2022-04-19 13:13:19 INFO a.m.s.MultiPartOutputStream(close):158 - Called close() on [MultipartOutputStream for parts 1 - 10000] 2022-04-19 13:13:19 destination > 2022-04-19 13:13:19 WARN a.m.s.MultiPartOutputStream(close):160 - [MultipartOutputStream for parts 1 - 10000] is already closed 2022-04-19 13:13:19 destination > 2022-04-19 13:13:19 INFO a.m.s.StreamTransferManager(complete):367 - [Manager uploading to travlrdatatesting/airbyte_data/brands/2022_04_19_1650365489228_9dc06c5f-d8a7-4901-b41d-a9c8e16df070.csv with id zgP5ZcAsh...ojN7UxA--]: Uploading leftover stream [Part number 1 containing 0.02 MB] 2022-04-19 13:13:20 destination > 2022-04-19 13:13:20 INFO a.m.s.StreamTransferManager(uploadStreamPart):558 - [Manager uploading to travlrdatatesting/airbyte_data/brands/2022_04_19_1650365489228_9dc06c5f-d8a7-4901-b41d-a9c8e16df070.csv with id zgP5ZcAsh...ojN7UxA--]: Finished uploading [Part number 1 containing 0.02 MB] 2022-04-19 13:13:20 destination > 2022-04-19 13:13:20 INFO a.m.s.StreamTransferManager(complete):395 - [Manager uploading to travlrdatatesting/airbyte_data/brands/2022_04_19_1650365489228_9dc06c5f-d8a7-4901-b41d-a9c8e16df070.csv with id zgP5ZcAsh...ojN7UxA--]: Completed 2022-04-19 13:13:20 destination > 2022-04-19 13:13:20 INFO i.a.i.d.s.w.BaseS3Writer(close):115 - Upload completed for stream 'brands'. 2022-04-19 13:13:20 destination > 2022-04-19 13:13:20 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationSchema):152 - Creating schema in destination if it doesn't exist: zendesk 2022-04-19 13:13:26 destination > 2022-04-19 13:13:26 INFO i.a.i.d.j.c.s.S3StreamCopier(createTemporaryTable):158 - Preparing tmp table in destination for stream: brands, schema: zendesk, tmp table name: _airbyte_tmp_unr_brands. 2022-04-19 13:13:27 destination > 2022-04-19 13:13:27 INFO i.a.i.d.r.RedshiftStreamCopier(copyStagingFileToTemporaryTable):85 - Starting copy to tmp table: _airbyte_tmp_unr_brands in destination for stream: brands, schema: zendesk, . 2022-04-19 13:13:29 destination > 2022-04-19 13:13:29 INFO i.a.i.d.r.RedshiftStreamCopier(copyStagingFileToTemporaryTable):89 - Copy to tmp table _airbyte_tmp_unr_brands in destination for stream brands complete. 2022-04-19 13:13:29 destination > 2022-04-19 13:13:29 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationTable):174 - Preparing table _airbyte_raw_brands in destination. 2022-04-19 13:13:29 destination > 2022-04-19 13:13:29 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationTable):176 - Table _airbyte_tmp_unr_brands in destination prepared. 2022-04-19 13:13:29 destination > 2022-04-19 13:13:29 INFO i.a.i.d.j.c.s.S3StreamCopier(generateMergeStatement):183 - Preparing to merge tmp table _airbyte_tmp_unr_brands to dest table: _airbyte_raw_brands, schema: zendesk, in destination. 2022-04-19 13:13:29 destination > 2022-04-19 13:13:29 INFO i.a.i.d.s.w.BaseS3Writer(close):113 - Uploading remaining data for stream 'sla_policies'. 2022-04-19 13:13:29 destination > 2022-04-19 13:13:29 INFO a.m.s.MultiPartOutputStream(close):158 - Called close() on [MultipartOutputStream for parts 1 - 10000] 2022-04-19 13:13:29 destination > 2022-04-19 13:13:29 INFO a.m.s.MultiPartOutputStream(close):158 - Called close() on [MultipartOutputStream for parts 1 - 10000] 2022-04-19 13:13:29 destination > 2022-04-19 13:13:29 WARN a.m.s.MultiPartOutputStream(close):160 - [MultipartOutputStream for parts 1 - 10000] is already closed 2022-04-19 13:13:29 destination > 2022-04-19 13:13:29 INFO a.m.s.StreamTransferManager(complete):367 - [Manager uploading to travlrdatatesting/airbyte_data/sla_policies/2022_04_19_1650365489230_b4ec8c47-505c-4324-b71d-383b700bcbc5.csv with id G0Ap2L3wi...rP7HD2A--]: Uploading leftover stream [Part number 1 containing 0.03 MB] 2022-04-19 13:13:29 destination > 2022-04-19 13:13:29 INFO a.m.s.StreamTransferManager(uploadStreamPart):558 - [Manager uploading to travlrdatatesting/airbyte_data/sla_policies/2022_04_19_1650365489230_b4ec8c47-505c-4324-b71d-383b700bcbc5.csv with id G0Ap2L3wi...rP7HD2A--]: Finished uploading [Part number 1 containing 0.03 MB] 2022-04-19 13:13:29 destination > 2022-04-19 13:13:29 INFO a.m.s.StreamTransferManager(complete):395 - [Manager uploading to travlrdatatesting/airbyte_data/sla_policies/2022_04_19_1650365489230_b4ec8c47-505c-4324-b71d-383b700bcbc5.csv with id G0Ap2L3wi...rP7HD2A--]: Completed 2022-04-19 13:13:29 destination > 2022-04-19 13:13:29 INFO i.a.i.d.s.w.BaseS3Writer(close):115 - Upload completed for stream 'sla_policies'. 2022-04-19 13:13:29 destination > 2022-04-19 13:13:29 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationSchema):152 - Creating schema in destination if it doesn't exist: zendesk 2022-04-19 13:13:30 destination > 2022-04-19 13:13:30 INFO i.a.i.d.j.c.s.S3StreamCopier(createTemporaryTable):158 - Preparing tmp table in destination for stream: sla_policies, schema: zendesk, tmp table name: _airbyte_tmp_haq_sla_policies. 2022-04-19 13:13:30 destination > 2022-04-19 13:13:30 INFO i.a.i.d.r.RedshiftStreamCopier(copyStagingFileToTemporaryTable):85 - Starting copy to tmp table: _airbyte_tmp_haq_sla_policies in destination for stream: sla_policies, schema: zendesk, . 2022-04-19 13:13:31 destination > 2022-04-19 13:13:31 INFO i.a.i.d.r.RedshiftStreamCopier(copyStagingFileToTemporaryTable):89 - Copy to tmp table _airbyte_tmp_haq_sla_policies in destination for stream sla_policies complete. 2022-04-19 13:13:31 destination > 2022-04-19 13:13:31 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationTable):174 - Preparing table _airbyte_raw_sla_policies in destination. 2022-04-19 13:13:31 destination > 2022-04-19 13:13:31 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationTable):176 - Table _airbyte_tmp_haq_sla_policies in destination prepared. 2022-04-19 13:13:31 destination > 2022-04-19 13:13:31 INFO i.a.i.d.j.c.s.S3StreamCopier(generateMergeStatement):183 - Preparing to merge tmp table _airbyte_tmp_haq_sla_policies to dest table: _airbyte_raw_sla_policies, schema: zendesk, in destination. 2022-04-19 13:13:31 destination > 2022-04-19 13:13:31 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationSchema):152 - Creating schema in destination if it doesn't exist: zendesk 2022-04-19 13:13:31 destination > 2022-04-19 13:13:31 INFO i.a.i.d.j.c.s.S3StreamCopier(createTemporaryTable):158 - Preparing tmp table in destination for stream: tickets, schema: zendesk, tmp table name: _airbyte_tmp_rsk_tickets. 2022-04-19 13:13:31 destination > 2022-04-19 13:13:31 INFO i.a.i.d.r.RedshiftStreamCopier(copyStagingFileToTemporaryTable):85 - Starting copy to tmp table: _airbyte_tmp_rsk_tickets in destination for stream: tickets, schema: zendesk, . 2022-04-19 13:13:31 destination > 2022-04-19 13:13:31 INFO i.a.i.d.r.RedshiftStreamCopier(copyStagingFileToTemporaryTable):89 - Copy to tmp table _airbyte_tmp_rsk_tickets in destination for stream tickets complete. 2022-04-19 13:13:31 destination > 2022-04-19 13:13:31 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationTable):174 - Preparing table _airbyte_raw_tickets in destination. 2022-04-19 13:13:31 destination > 2022-04-19 13:13:31 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationTable):176 - Table _airbyte_tmp_rsk_tickets in destination prepared. 2022-04-19 13:13:31 destination > 2022-04-19 13:13:31 INFO i.a.i.d.j.c.s.S3StreamCopier(generateMergeStatement):183 - Preparing to merge tmp table _airbyte_tmp_rsk_tickets to dest table: _airbyte_raw_tickets, schema: zendesk, in destination. 2022-04-19 13:13:31 destination > 2022-04-19 13:13:31 INFO i.a.i.d.s.w.BaseS3Writer(close):113 - Uploading remaining data for stream 'ticket_metric_events'. 2022-04-19 13:13:31 destination > 2022-04-19 13:13:31 INFO a.m.s.MultiPartOutputStream(close):158 - Called close() on [MultipartOutputStream for parts 1 - 10000] 2022-04-19 13:13:31 destination > 2022-04-19 13:13:31 INFO a.m.s.MultiPartOutputStream(close):158 - Called close() on [MultipartOutputStream for parts 1 - 10000] 2022-04-19 13:13:31 destination > 2022-04-19 13:13:31 WARN a.m.s.MultiPartOutputStream(close):160 - [MultipartOutputStream for parts 1 - 10000] is already closed 2022-04-19 13:13:31 destination > 2022-04-19 13:13:31 INFO a.m.s.StreamTransferManager(complete):367 - [Manager uploading to travlrdatatesting/airbyte_data/ticket_metric_events/2022_04_19_1650365489231_dec743cb-f6b0-4fac-8244-152444fd5a6d.csv with id 2RaWFw_1R...WC2H2Jg--]: Uploading leftover stream [Part number 1 containing 1.34 MB] 2022-04-19 13:13:33 destination > 2022-04-19 13:13:33 INFO a.m.s.StreamTransferManager(uploadStreamPart):558 - [Manager uploading to travlrdatatesting/airbyte_data/ticket_metric_events/2022_04_19_1650365489231_dec743cb-f6b0-4fac-8244-152444fd5a6d.csv with id 2RaWFw_1R...WC2H2Jg--]: Finished uploading [Part number 1 containing 1.34 MB] 2022-04-19 13:13:33 destination > 2022-04-19 13:13:33 INFO a.m.s.StreamTransferManager(complete):395 - [Manager uploading to travlrdatatesting/airbyte_data/ticket_metric_events/2022_04_19_1650365489231_dec743cb-f6b0-4fac-8244-152444fd5a6d.csv with id 2RaWFw_1R...WC2H2Jg--]: Completed 2022-04-19 13:13:33 destination > 2022-04-19 13:13:33 INFO i.a.i.d.s.w.BaseS3Writer(close):115 - Upload completed for stream 'ticket_metric_events'. 2022-04-19 13:13:33 destination > 2022-04-19 13:13:33 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationSchema):152 - Creating schema in destination if it doesn't exist: zendesk 2022-04-19 13:13:33 destination > 2022-04-19 13:13:33 INFO i.a.i.d.j.c.s.S3StreamCopier(createTemporaryTable):158 - Preparing tmp table in destination for stream: ticket_metric_events, schema: zendesk, tmp table name: _airbyte_tmp_zmx_ticket_metric_events. 2022-04-19 13:13:33 destination > 2022-04-19 13:13:33 INFO i.a.i.d.r.RedshiftStreamCopier(copyStagingFileToTemporaryTable):85 - Starting copy to tmp table: _airbyte_tmp_zmx_ticket_metric_events in destination for stream: ticket_metric_events, schema: zendesk, . 2022-04-19 13:13:34 destination > 2022-04-19 13:13:34 INFO i.a.i.d.r.RedshiftStreamCopier(copyStagingFileToTemporaryTable):89 - Copy to tmp table _airbyte_tmp_zmx_ticket_metric_events in destination for stream ticket_metric_events complete. 2022-04-19 13:13:34 destination > 2022-04-19 13:13:34 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationTable):174 - Preparing table _airbyte_raw_ticket_metric_events in destination. 2022-04-19 13:13:34 destination > 2022-04-19 13:13:34 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationTable):176 - Table _airbyte_tmp_zmx_ticket_metric_events in destination prepared. 2022-04-19 13:13:34 destination > 2022-04-19 13:13:34 INFO i.a.i.d.j.c.s.S3StreamCopier(generateMergeStatement):183 - Preparing to merge tmp table _airbyte_tmp_zmx_ticket_metric_events to dest table: _airbyte_raw_ticket_metric_events, schema: zendesk, in destination. 2022-04-19 13:13:34 destination > 2022-04-19 13:13:34 INFO i.a.i.d.s.w.BaseS3Writer(close):113 - Uploading remaining data for stream 'ticket_metrics'. 2022-04-19 13:13:34 destination > 2022-04-19 13:13:34 INFO a.m.s.MultiPartOutputStream(close):158 - Called close() on [MultipartOutputStream for parts 1 - 10000] 2022-04-19 13:13:34 destination > 2022-04-19 13:13:34 INFO a.m.s.MultiPartOutputStream(close):158 - Called close() on [MultipartOutputStream for parts 1 - 10000] 2022-04-19 13:13:34 destination > 2022-04-19 13:13:34 WARN a.m.s.MultiPartOutputStream(close):160 - [MultipartOutputStream for parts 1 - 10000] is already closed 2022-04-19 13:13:38 destination > 2022-04-19 13:13:38 INFO a.m.s.StreamTransferManager(uploadStreamPart):558 - [Manager uploading to travlrdatatesting/airbyte_data/ticket_metrics/2022_04_19_1650365489231_3834c0e3-6f70-4716-9b22-01ea5c83901e.csv with id FDfzzvyL8...FBbgxnw--]: Finished uploading [Part number 1 containing 14.99 MB] 2022-04-19 13:13:38 destination > 2022-04-19 13:13:38 INFO a.m.s.StreamTransferManager(complete):395 - [Manager uploading to travlrdatatesting/airbyte_data/ticket_metrics/2022_04_19_1650365489231_3834c0e3-6f70-4716-9b22-01ea5c83901e.csv with id FDfzzvyL8...FBbgxnw--]: Completed 2022-04-19 13:13:38 destination > 2022-04-19 13:13:38 INFO i.a.i.d.s.w.BaseS3Writer(close):115 - Upload completed for stream 'ticket_metrics'. 2022-04-19 13:13:38 destination > 2022-04-19 13:13:38 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationSchema):152 - Creating schema in destination if it doesn't exist: zendesk 2022-04-19 13:13:39 destination > 2022-04-19 13:13:39 INFO i.a.i.d.j.c.s.S3StreamCopier(createTemporaryTable):158 - Preparing tmp table in destination for stream: ticket_metrics, schema: zendesk, tmp table name: _airbyte_tmp_zfr_ticket_metrics. 2022-04-19 13:13:39 destination > 2022-04-19 13:13:39 INFO i.a.i.d.r.RedshiftStreamCopier(copyStagingFileToTemporaryTable):85 - Starting copy to tmp table: _airbyte_tmp_zfr_ticket_metrics in destination for stream: ticket_metrics, schema: zendesk, . 2022-04-19 13:13:40 destination > 2022-04-19 13:13:40 INFO i.a.i.d.r.RedshiftStreamCopier(copyStagingFileToTemporaryTable):89 - Copy to tmp table _airbyte_tmp_zfr_ticket_metrics in destination for stream ticket_metrics complete. 2022-04-19 13:13:40 destination > 2022-04-19 13:13:40 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationTable):174 - Preparing table _airbyte_raw_ticket_metrics in destination. 2022-04-19 13:13:41 destination > 2022-04-19 13:13:41 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationTable):176 - Table _airbyte_tmp_zfr_ticket_metrics in destination prepared. 2022-04-19 13:13:41 destination > 2022-04-19 13:13:41 INFO i.a.i.d.j.c.s.S3StreamCopier(generateMergeStatement):183 - Preparing to merge tmp table _airbyte_tmp_zfr_ticket_metrics to dest table: _airbyte_raw_ticket_metrics, schema: zendesk, in destination. 2022-04-19 13:13:41 destination > 2022-04-19 13:13:41 INFO i.a.i.d.s.w.BaseS3Writer(close):113 - Uploading remaining data for stream 'tags'. 2022-04-19 13:13:41 destination > 2022-04-19 13:13:41 INFO a.m.s.MultiPartOutputStream(close):158 - Called close() on [MultipartOutputStream for parts 1 - 10000] 2022-04-19 13:13:41 destination > 2022-04-19 13:13:41 INFO a.m.s.MultiPartOutputStream(close):158 - Called close() on [MultipartOutputStream for parts 1 - 10000] 2022-04-19 13:13:41 destination > 2022-04-19 13:13:41 WARN a.m.s.MultiPartOutputStream(close):160 - [MultipartOutputStream for parts 1 - 10000] is already closed 2022-04-19 13:13:41 destination > 2022-04-19 13:13:41 INFO a.m.s.StreamTransferManager(complete):367 - [Manager uploading to travlrdatatesting/airbyte_data/tags/2022_04_19_1650365489230_ddd5b656-ef4f-4aa1-90e1-9b4e351289a9.csv with id sI6BWXhW1...hYibb5g--]: Uploading leftover stream [Part number 1 containing 0.02 MB] 2022-04-19 13:13:41 destination > 2022-04-19 13:13:41 INFO a.m.s.StreamTransferManager(uploadStreamPart):558 - [Manager uploading to travlrdatatesting/airbyte_data/tags/2022_04_19_1650365489230_ddd5b656-ef4f-4aa1-90e1-9b4e351289a9.csv with id sI6BWXhW1...hYibb5g--]: Finished uploading [Part number 1 containing 0.02 MB] 2022-04-19 13:13:41 destination > 2022-04-19 13:13:41 INFO a.m.s.StreamTransferManager(complete):395 - [Manager uploading to travlrdatatesting/airbyte_data/tags/2022_04_19_1650365489230_ddd5b656-ef4f-4aa1-90e1-9b4e351289a9.csv with id sI6BWXhW1...hYibb5g--]: Completed 2022-04-19 13:13:41 destination > 2022-04-19 13:13:41 INFO i.a.i.d.s.w.BaseS3Writer(close):115 - Upload completed for stream 'tags'. 2022-04-19 13:13:41 destination > 2022-04-19 13:13:41 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationSchema):152 - Creating schema in destination if it doesn't exist: zendesk 2022-04-19 13:13:41 destination > 2022-04-19 13:13:41 INFO i.a.i.d.j.c.s.S3StreamCopier(createTemporaryTable):158 - Preparing tmp table in destination for stream: tags, schema: zendesk, tmp table name: _airbyte_tmp_lrs_tags. 2022-04-19 13:13:41 destination > 2022-04-19 13:13:41 INFO i.a.i.d.r.RedshiftStreamCopier(copyStagingFileToTemporaryTable):85 - Starting copy to tmp table: _airbyte_tmp_lrs_tags in destination for stream: tags, schema: zendesk, . 2022-04-19 13:13:42 destination > 2022-04-19 13:13:42 INFO i.a.i.d.r.RedshiftStreamCopier(copyStagingFileToTemporaryTable):89 - Copy to tmp table _airbyte_tmp_lrs_tags in destination for stream tags complete. 2022-04-19 13:13:42 destination > 2022-04-19 13:13:42 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationTable):174 - Preparing table _airbyte_raw_tags in destination. 2022-04-19 13:13:42 destination > 2022-04-19 13:13:42 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationTable):176 - Table _airbyte_tmp_lrs_tags in destination prepared. 2022-04-19 13:13:42 destination > 2022-04-19 13:13:42 INFO i.a.i.d.j.c.s.S3StreamCopier(generateMergeStatement):183 - Preparing to merge tmp table _airbyte_tmp_lrs_tags to dest table: _airbyte_raw_tags, schema: zendesk, in destination. 2022-04-19 13:13:42 destination > 2022-04-19 13:13:42 INFO i.a.i.d.s.w.BaseS3Writer(close):113 - Uploading remaining data for stream 'ticket_fields'. 2022-04-19 13:13:42 destination > 2022-04-19 13:13:42 INFO a.m.s.MultiPartOutputStream(close):158 - Called close() on [MultipartOutputStream for parts 1 - 10000] 2022-04-19 13:13:42 destination > 2022-04-19 13:13:42 INFO a.m.s.MultiPartOutputStream(close):158 - Called close() on [MultipartOutputStream for parts 1 - 10000] 2022-04-19 13:13:42 destination > 2022-04-19 13:13:42 WARN a.m.s.MultiPartOutputStream(close):160 - [MultipartOutputStream for parts 1 - 10000] is already closed 2022-04-19 13:13:42 destination > 2022-04-19 13:13:42 INFO a.m.s.StreamTransferManager(complete):367 - [Manager uploading to travlrdatatesting/airbyte_data/ticket_fields/2022_04_19_1650365489230_b6d71c3d-1fd6-4c31-8899-d726045b84f2.csv with id RnquPRcCj...h7PMoHQ--]: Uploading leftover stream [Part number 1 containing 0.02 MB] 2022-04-19 13:13:42 destination > 2022-04-19 13:13:42 INFO a.m.s.StreamTransferManager(uploadStreamPart):558 - [Manager uploading to travlrdatatesting/airbyte_data/ticket_fields/2022_04_19_1650365489230_b6d71c3d-1fd6-4c31-8899-d726045b84f2.csv with id RnquPRcCj...h7PMoHQ--]: Finished uploading [Part number 1 containing 0.02 MB] 2022-04-19 13:13:42 destination > 2022-04-19 13:13:42 INFO a.m.s.StreamTransferManager(complete):395 - [Manager uploading to travlrdatatesting/airbyte_data/ticket_fields/2022_04_19_1650365489230_b6d71c3d-1fd6-4c31-8899-d726045b84f2.csv with id RnquPRcCj...h7PMoHQ--]: Completed 2022-04-19 13:13:42 destination > 2022-04-19 13:13:42 INFO i.a.i.d.s.w.BaseS3Writer(close):115 - Upload completed for stream 'ticket_fields'. 2022-04-19 13:13:42 destination > 2022-04-19 13:13:42 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationSchema):152 - Creating schema in destination if it doesn't exist: zendesk 2022-04-19 13:13:42 destination > 2022-04-19 13:13:42 INFO i.a.i.d.j.c.s.S3StreamCopier(createTemporaryTable):158 - Preparing tmp table in destination for stream: ticket_fields, schema: zendesk, tmp table name: _airbyte_tmp_oxl_ticket_fields. 2022-04-19 13:13:43 destination > 2022-04-19 13:13:43 INFO i.a.i.d.r.RedshiftStreamCopier(copyStagingFileToTemporaryTable):85 - Starting copy to tmp table: _airbyte_tmp_oxl_ticket_fields in destination for stream: ticket_fields, schema: zendesk, . 2022-04-19 13:13:43 destination > 2022-04-19 13:13:43 INFO i.a.i.d.r.RedshiftStreamCopier(copyStagingFileToTemporaryTable):89 - Copy to tmp table _airbyte_tmp_oxl_ticket_fields in destination for stream ticket_fields complete. 2022-04-19 13:13:43 destination > 2022-04-19 13:13:43 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationTable):174 - Preparing table _airbyte_raw_ticket_fields in destination. 2022-04-19 13:13:43 destination > 2022-04-19 13:13:43 INFO i.a.i.d.j.c.s.S3StreamCopier(createDestinationTable):176 - Table _airbyte_tmp_oxl_ticket_fields in destination prepared. 2022-04-19 13:13:43 destination > 2022-04-19 13:13:43 INFO i.a.i.d.j.c.s.S3StreamCopier(generateMergeStatement):183 - Preparing to merge tmp table _airbyte_tmp_oxl_ticket_fields to dest table: _airbyte_raw_ticket_fields, schema: zendesk, in destination. 2022-04-19 13:13:44 destination > 2022-04-19 13:13:44 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):198 - S3 staging file airbyte_data/brands/2022_04_19_1650365489228_9dc06c5f-d8a7-4901-b41d-a9c8e16df070.csv cleaned. 2022-04-19 13:13:44 destination > 2022-04-19 13:13:44 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):202 - Begin cleaning _airbyte_tmp_unr_brands tmp table in destination. 2022-04-19 13:13:44 destination > 2022-04-19 13:13:44 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):204 - _airbyte_tmp_unr_brands tmp table in destination cleaned. 2022-04-19 13:13:44 destination > 2022-04-19 13:13:44 INFO i.a.i.d.r.RedshiftStreamCopier(removeFileAndDropTmpTable):105 - Begin cleaning s3 manifest file airbyte_data/758fcf15-a12e-4e82-b8f6-d894cfaee5c9/zendesk/d2356b62-9166-4642-82f0-9c2e50e266b5.manifest. 2022-04-19 13:13:44 destination > 2022-04-19 13:13:44 INFO i.a.i.d.r.RedshiftStreamCopier(removeFileAndDropTmpTable):109 - S3 manifest file airbyte_data/758fcf15-a12e-4e82-b8f6-d894cfaee5c9/zendesk/d2356b62-9166-4642-82f0-9c2e50e266b5.manifest cleaned. 2022-04-19 13:13:44 destination > 2022-04-19 13:13:44 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):198 - S3 staging file airbyte_data/sla_policies/2022_04_19_1650365489230_b4ec8c47-505c-4324-b71d-383b700bcbc5.csv cleaned. 2022-04-19 13:13:44 destination > 2022-04-19 13:13:44 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):202 - Begin cleaning _airbyte_tmp_haq_sla_policies tmp table in destination. 2022-04-19 13:13:44 destination > 2022-04-19 13:13:44 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):204 - _airbyte_tmp_haq_sla_policies tmp table in destination cleaned. 2022-04-19 13:13:44 destination > 2022-04-19 13:13:44 INFO i.a.i.d.r.RedshiftStreamCopier(removeFileAndDropTmpTable):105 - Begin cleaning s3 manifest file airbyte_data/758fcf15-a12e-4e82-b8f6-d894cfaee5c9/zendesk/76b3fa39-e730-41d6-ab89-7ea75d1f462b.manifest. 2022-04-19 13:13:45 destination > 2022-04-19 13:13:45 INFO i.a.i.d.r.RedshiftStreamCopier(removeFileAndDropTmpTable):109 - S3 manifest file airbyte_data/758fcf15-a12e-4e82-b8f6-d894cfaee5c9/zendesk/76b3fa39-e730-41d6-ab89-7ea75d1f462b.manifest cleaned. 2022-04-19 13:13:45 destination > 2022-04-19 13:13:45 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):202 - Begin cleaning _airbyte_tmp_rsk_tickets tmp table in destination. 2022-04-19 13:13:45 destination > 2022-04-19 13:13:45 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):204 - _airbyte_tmp_rsk_tickets tmp table in destination cleaned. 2022-04-19 13:13:45 destination > 2022-04-19 13:13:45 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):198 - S3 staging file airbyte_data/ticket_metric_events/2022_04_19_1650365489231_dec743cb-f6b0-4fac-8244-152444fd5a6d.csv cleaned. 2022-04-19 13:13:45 destination > 2022-04-19 13:13:45 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):202 - Begin cleaning _airbyte_tmp_zmx_ticket_metric_events tmp table in destination. 2022-04-19 13:13:45 destination > 2022-04-19 13:13:45 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):204 - _airbyte_tmp_zmx_ticket_metric_events tmp table in destination cleaned. 2022-04-19 13:13:45 destination > 2022-04-19 13:13:45 INFO i.a.i.d.r.RedshiftStreamCopier(removeFileAndDropTmpTable):105 - Begin cleaning s3 manifest file airbyte_data/758fcf15-a12e-4e82-b8f6-d894cfaee5c9/zendesk/f4e6d3a5-255a-4c87-85dd-931183e9177b.manifest. 2022-04-19 13:13:45 destination > 2022-04-19 13:13:45 INFO i.a.i.d.r.RedshiftStreamCopier(removeFileAndDropTmpTable):109 - S3 manifest file airbyte_data/758fcf15-a12e-4e82-b8f6-d894cfaee5c9/zendesk/f4e6d3a5-255a-4c87-85dd-931183e9177b.manifest cleaned. 2022-04-19 13:13:45 destination > 2022-04-19 13:13:45 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):198 - S3 staging file airbyte_data/ticket_metrics/2022_04_19_1650365489231_3834c0e3-6f70-4716-9b22-01ea5c83901e.csv cleaned. 2022-04-19 13:13:45 destination > 2022-04-19 13:13:45 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):202 - Begin cleaning _airbyte_tmp_zfr_ticket_metrics tmp table in destination. 2022-04-19 13:13:45 destination > 2022-04-19 13:13:45 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):204 - _airbyte_tmp_zfr_ticket_metrics tmp table in destination cleaned. 2022-04-19 13:13:45 destination > 2022-04-19 13:13:45 INFO i.a.i.d.r.RedshiftStreamCopier(removeFileAndDropTmpTable):105 - Begin cleaning s3 manifest file airbyte_data/758fcf15-a12e-4e82-b8f6-d894cfaee5c9/zendesk/fb835c54-6404-44b6-8763-78ed81bc04fe.manifest. 2022-04-19 13:13:45 destination > 2022-04-19 13:13:45 INFO i.a.i.d.r.RedshiftStreamCopier(removeFileAndDropTmpTable):109 - S3 manifest file airbyte_data/758fcf15-a12e-4e82-b8f6-d894cfaee5c9/zendesk/fb835c54-6404-44b6-8763-78ed81bc04fe.manifest cleaned. 2022-04-19 13:13:46 destination > 2022-04-19 13:13:46 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):198 - S3 staging file airbyte_data/tags/2022_04_19_1650365489230_ddd5b656-ef4f-4aa1-90e1-9b4e351289a9.csv cleaned. 2022-04-19 13:13:46 destination > 2022-04-19 13:13:46 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):202 - Begin cleaning _airbyte_tmp_lrs_tags tmp table in destination. 2022-04-19 13:13:46 destination > 2022-04-19 13:13:46 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):204 - _airbyte_tmp_lrs_tags tmp table in destination cleaned. 2022-04-19 13:13:46 destination > 2022-04-19 13:13:46 INFO i.a.i.d.r.RedshiftStreamCopier(removeFileAndDropTmpTable):105 - Begin cleaning s3 manifest file airbyte_data/758fcf15-a12e-4e82-b8f6-d894cfaee5c9/zendesk/89d43e57-c273-497e-82e4-a3d145f109e9.manifest. 2022-04-19 13:13:46 destination > 2022-04-19 13:13:46 INFO i.a.i.d.r.RedshiftStreamCopier(removeFileAndDropTmpTable):109 - S3 manifest file airbyte_data/758fcf15-a12e-4e82-b8f6-d894cfaee5c9/zendesk/89d43e57-c273-497e-82e4-a3d145f109e9.manifest cleaned. 2022-04-19 13:13:46 destination > 2022-04-19 13:13:46 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):198 - S3 staging file airbyte_data/ticket_fields/2022_04_19_1650365489230_b6d71c3d-1fd6-4c31-8899-d726045b84f2.csv cleaned. 2022-04-19 13:13:46 destination > 2022-04-19 13:13:46 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):202 - Begin cleaning _airbyte_tmp_oxl_ticket_fields tmp table in destination. 2022-04-19 13:13:46 destination > 2022-04-19 13:13:46 INFO i.a.i.d.j.c.s.S3StreamCopier(removeFileAndDropTmpTable):204 - _airbyte_tmp_oxl_ticket_fields tmp table in destination cleaned. 2022-04-19 13:13:46 destination > 2022-04-19 13:13:46 INFO i.a.i.d.r.RedshiftStreamCopier(removeFileAndDropTmpTable):105 - Begin cleaning s3 manifest file airbyte_data/758fcf15-a12e-4e82-b8f6-d894cfaee5c9/zendesk/e41aebcd-46e7-4110-9fba-bd7a11e497ab.manifest. 2022-04-19 13:13:46 destination > 2022-04-19 13:13:46 INFO i.a.i.d.r.RedshiftStreamCopier(removeFileAndDropTmpTable):109 - S3 manifest file airbyte_data/758fcf15-a12e-4e82-b8f6-d894cfaee5c9/zendesk/e41aebcd-46e7-4110-9fba-bd7a11e497ab.manifest cleaned. 2022-04-19 13:13:46 INFO i.a.w.DefaultReplicationWorker(lambda$getDestinationOutputRunnable$6):347 - State in DefaultReplicationWorker from destination: io.airbyte.protocol.models.AirbyteMessage@68c52ab5[type=STATE,log=,spec=,connectionStatus=,catalog=,record=,state=io.airbyte.protocol.models.AirbyteStateMessage@6602d9dd[data={"ticket_fields":{"updated_at":"2022-04-14T06:20:39Z"},"ticket_metric_events":{"time":"2022-04-19T10:29:34Z"}},additionalProperties={}],additionalProperties={}] 2022-04-19 13:13:46 destination > 2022-04-19 13:13:46 INFO i.a.i.b.IntegrationRunner(runInternal):169 - Completed integration: io.airbyte.integrations.destination.redshift.RedshiftDestination 2022-04-19 13:13:46 destination > 2022-04-19 13:13:46 INFO i.a.i.d.r.RedshiftDestination(main):79 - completed destination: class io.airbyte.integrations.destination.redshift.RedshiftDestination 2022-04-19 13:13:47 ERROR i.a.w.DefaultReplicationWorker(run):168 - Sync worker failed. java.util.concurrent.ExecutionException: io.airbyte.workers.DefaultReplicationWorker$SourceException: Source process exited with non-zero exit code 1 at java.util.concurrent.CompletableFuture.reportGet(CompletableFuture.java:396) ~[?:?] at java.util.concurrent.CompletableFuture.get(CompletableFuture.java:2073) ~[?:?] at io.airbyte.workers.DefaultReplicationWorker.run(DefaultReplicationWorker.java:161) ~[io.airbyte-airbyte-workers-0.35.30-alpha.jar:?] at io.airbyte.workers.DefaultReplicationWorker.run(DefaultReplicationWorker.java:56) ~[io.airbyte-airbyte-workers-0.35.30-alpha.jar:?] at io.airbyte.workers.temporal.TemporalAttemptExecution.lambda$getWorkerThread$2(TemporalAttemptExecution.java:155) ~[io.airbyte-airbyte-workers-0.35.30-alpha.jar:?] at java.lang.Thread.run(Thread.java:833) [?:?] Suppressed: io.airbyte.workers.WorkerException: Source process exit with code 1. This warning is normal if the job was cancelled. at io.airbyte.workers.protocols.airbyte.DefaultAirbyteSource.close(DefaultAirbyteSource.java:136) ~[io.airbyte-airbyte-workers-0.35.30-alpha.jar:?] at io.airbyte.workers.DefaultReplicationWorker.run(DefaultReplicationWorker.java:125) ~[io.airbyte-airbyte-workers-0.35.30-alpha.jar:?] at io.airbyte.workers.DefaultReplicationWorker.run(DefaultReplicationWorker.java:56) ~[io.airbyte-airbyte-workers-0.35.30-alpha.jar:?] at io.airbyte.workers.temporal.TemporalAttemptExecution.lambda$getWorkerThread$2(TemporalAttemptExecution.java:155) ~[io.airbyte-airbyte-workers-0.35.30-alpha.jar:?] at java.lang.Thread.run(Thread.java:833) [?:?] Caused by: io.airbyte.workers.DefaultReplicationWorker$SourceException: Source process exited with non-zero exit code 1 at io.airbyte.workers.DefaultReplicationWorker.lambda$getReplicationRunnable$5(DefaultReplicationWorker.java:310) ~[io.airbyte-airbyte-workers-0.35.30-alpha.jar:?] at java.util.concurrent.CompletableFuture$AsyncRun.run(CompletableFuture.java:1804) ~[?:?] at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) ~[?:?] at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) ~[?:?] ... 1 more 2022-04-19 13:13:47 INFO i.a.w.DefaultReplicationWorker(run):227 - sync summary: io.airbyte.config.ReplicationAttemptSummary@18c6d0a5[status=failed,recordsSynced=21093,bytesSynced=14420657,startTime=1650365483927,endTime=1650374027867,totalStats=io.airbyte.config.SyncStats@46d61d88[recordsEmitted=21093,bytesEmitted=14420657,stateMessagesEmitted=2,recordsCommitted=6317],streamStats=[io.airbyte.config.StreamSyncStats@3dabbe5[streamName=ticket_fields,stats=io.airbyte.config.SyncStats@681618c7[recordsEmitted=14,bytesEmitted=14758,stateMessagesEmitted=,recordsCommitted=14]], io.airbyte.config.StreamSyncStats@467bbe98[streamName=brands,stats=io.airbyte.config.SyncStats@3037c182[recordsEmitted=12,bytesEmitted=20589,stateMessagesEmitted=,recordsCommitted=12]], io.airbyte.config.StreamSyncStats@666441f2[streamName=ticket_metrics,stats=io.airbyte.config.SyncStats@3eecadd9[recordsEmitted=14776,bytesEmitted=13462693,stateMessagesEmitted=,recordsCommitted=]], io.airbyte.config.StreamSyncStats@25784be2[streamName=sla_policies,stats=io.airbyte.config.SyncStats@2b4db51e[recordsEmitted=11,bytesEmitted=26555,stateMessagesEmitted=,recordsCommitted=11]], io.airbyte.config.StreamSyncStats@6fe21a54[streamName=ticket_metric_events,stats=io.airbyte.config.SyncStats@34bbf014[recordsEmitted=6084,bytesEmitted=889997,stateMessagesEmitted=,recordsCommitted=6084]], io.airbyte.config.StreamSyncStats@53fb9a3a[streamName=tags,stats=io.airbyte.config.SyncStats@15d8201e[recordsEmitted=196,bytesEmitted=6065,stateMessagesEmitted=,recordsCommitted=196]]]] 2022-04-19 13:13:47 INFO i.a.w.DefaultReplicationWorker(run):247 - Source output at least one state message 2022-04-19 13:13:47 INFO i.a.w.DefaultReplicationWorker(run):253 - State capture: Updated state to: Optional[io.airbyte.config.State@6a97a84b[state={"ticket_fields":{"updated_at":"2022-04-14T06:20:39Z"},"ticket_metric_events":{"time":"2022-04-19T10:29:34Z"}}]] 2022-04-19 13:13:47 INFO i.a.w.t.TemporalAttemptExecution(get):131 - Stopping cancellation check scheduling... 2022-04-19 13:13:47 INFO i.a.w.t.s.ReplicationActivityImpl(lambda$replicate$1):144 - sync summary: io.airbyte.config.StandardSyncOutput@30481e05[standardSyncSummary=io.airbyte.config.StandardSyncSummary@3f81b13c[status=failed,recordsSynced=21093,bytesSynced=14420657,startTime=1650365483927,endTime=1650374027867,totalStats=io.airbyte.config.SyncStats@46d61d88[recordsEmitted=21093,bytesEmitted=14420657,stateMessagesEmitted=2,recordsCommitted=6317],streamStats=[io.airbyte.config.StreamSyncStats@3dabbe5[streamName=ticket_fields,stats=io.airbyte.config.SyncStats@681618c7[recordsEmitted=14,bytesEmitted=14758,stateMessagesEmitted=,recordsCommitted=14]], io.airbyte.config.StreamSyncStats@467bbe98[streamName=brands,stats=io.airbyte.config.SyncStats@3037c182[recordsEmitted=12,bytesEmitted=20589,stateMessagesEmitted=,recordsCommitted=12]], io.airbyte.config.StreamSyncStats@666441f2[streamName=ticket_metrics,stats=io.airbyte.config.SyncStats@3eecadd9[recordsEmitted=14776,bytesEmitted=13462693,stateMessagesEmitted=,recordsCommitted=]], io.airbyte.config.StreamSyncStats@25784be2[streamName=sla_policies,stats=io.airbyte.config.SyncStats@2b4db51e[recordsEmitted=11,bytesEmitted=26555,stateMessagesEmitted=,recordsCommitted=11]], io.airbyte.config.StreamSyncStats@6fe21a54[streamName=ticket_metric_events,stats=io.airbyte.config.SyncStats@34bbf014[recordsEmitted=6084,bytesEmitted=889997,stateMessagesEmitted=,recordsCommitted=6084]], io.airbyte.config.StreamSyncStats@53fb9a3a[streamName=tags,stats=io.airbyte.config.SyncStats@15d8201e[recordsEmitted=196,bytesEmitted=6065,stateMessagesEmitted=,recordsCommitted=196]]]],state=io.airbyte.config.State@6a97a84b[state={"ticket_fields":{"updated_at":"2022-04-14T06:20:39Z"},"ticket_metric_events":{"time":"2022-04-19T10:29:34Z"}}],outputCatalog=io.airbyte.protocol.models.ConfiguredAirbyteCatalog@48e6ec6e[streams=[io.airbyte.protocol.models.ConfiguredAirbyteStream@6eeae2ab[stream=io.airbyte.protocol.models.AirbyteStream@1e227145[name=brands,jsonSchema={"type":["null","object"],"properties":{"id":{"type":["null","integer"]},"url":{"type":["null","string"]},"logo":{"type":["null","string"]},"name":{"type":["null","string"]},"active":{"type":["null","boolean"]},"default":{"type":["null","boolean"]},"brand_url":{"type":["null","string"]},"subdomain":{"type":["null","string"]},"created_at":{"type":["null","string"],"format":"date-time"},"is_deleted":{"type":["null","boolean"]},"updated_at":{"type":["null","string"],"format":"date-time"},"host_mapping":{"type":["null","string"]},"has_help_center":{"type":["null","boolean"]},"ticket_form_ids":{"type":["null","array"]},"help_center_state":{"type":["null","string"]},"signature_template":{"type":["null","string"]}}},supportedSyncModes=[full_refresh],sourceDefinedCursor=,defaultCursorField=[],sourceDefinedPrimaryKey=[[id]],namespace=,additionalProperties={}],syncMode=full_refresh,cursorField=[],destinationSyncMode=append,primaryKey=[[id]],additionalProperties={}], io.airbyte.protocol.models.ConfiguredAirbyteStream@2c983bec[stream=io.airbyte.protocol.models.AirbyteStream@53e2278d[name=sla_policies,jsonSchema={"type":["object"],"properties":{"id":{"type":["integer"]},"url":{"type":["null","string"]},"title":{"type":["null","string"]},"filter":{"type":["null","object"],"properties":{"all":{"type":["null","array"],"items":{"type":["object"],"properties":{"field":{"type":["null","string"]},"value":{"type":["null","string","number","boolean"]},"operator":{"type":["null","string"]}}}},"any":{"type":["null","array"],"items":{"type":["object"],"properties":{"field":{"type":["null","string"]},"value":{"type":["null","string"]},"operator":{"type":["null","string"]}}}}}},"position":{"type":["null","integer"]},"created_at":{"type":["null","string"],"format":"date-time"},"updated_at":{"type":["null","string"],"format":"date-time"},"description":{"type":["null","string"]},"policy_metrics":{"type":["null","array"],"items":{"type":["null","object"],"properties":{"metric":{"type":["null","string"]},"target":{"type":["null","integer"]},"priority":{"type":["null","string"]},"business_hours":{"type":["null","boolean"]}}}}}},supportedSyncModes=[full_refresh],sourceDefinedCursor=,defaultCursorField=[],sourceDefinedPrimaryKey=[[id]],namespace=,additionalProperties={}],syncMode=full_refresh,cursorField=[],destinationSyncMode=append,primaryKey=[[id]],additionalProperties={}], io.airbyte.protocol.models.ConfiguredAirbyteStream@6aa478e0[stream=io.airbyte.protocol.models.AirbyteStream@678184a8[name=tags,jsonSchema={"type":["null","object"],"properties":{"name":{"type":["null","string"]},"count":{"type":["null","integer"]}}},supportedSyncModes=[full_refresh],sourceDefinedCursor=,defaultCursorField=[],sourceDefinedPrimaryKey=[[name]],namespace=,additionalProperties={}],syncMode=full_refresh,cursorField=[],destinationSyncMode=append,primaryKey=[[name]],additionalProperties={}], io.airbyte.protocol.models.ConfiguredAirbyteStream@a2b84ef[stream=io.airbyte.protocol.models.AirbyteStream@48371468[name=ticket_fields,jsonSchema={"type":["null","object"],"properties":{"id":{"type":["null","integer"]},"tag":{"type":["null","string"]},"url":{"type":["null","string"]},"type":{"type":["null","string"]},"title":{"type":["null","string"]},"active":{"type":["null","boolean"]},"position":{"type":["null","integer"]},"required":{"type":["null","boolean"]},"raw_title":{"type":["null","string"]},"removable":{"type":["null","boolean"]},"created_at":{"type":["null","string"],"format":"date-time"},"updated_at":{"type":["null","string"],"format":"date-time"},"description":{"type":["null","string"]},"sub_type_id":{"type":["null","integer"]},"raw_description":{"type":["null","string"]},"title_in_portal":{"type":["null","string"]},"agent_description":{"type":["null","string"]},"visible_in_portal":{"type":["null","boolean"]},"editable_in_portal":{"type":["null","boolean"]},"required_in_portal":{"type":["null","boolean"]},"raw_title_in_portal":{"type":["null","string"]},"collapsed_for_agents":{"type":["null","boolean"]},"custom_field_options":{"type":["null","array"],"items":{"type":["null","object"],"properties":{"id":{"type":["null","integer"]},"name":{"type":["null","string"]},"value":{"type":["null","string"]},"default":{"type":["null","boolean"]},"raw_name":{"type":["null","string"]}}}},"system_field_options":{"type":["null","array"]},"regexp_for_validation":{"type":["null","string"]}}},supportedSyncModes=[full_refresh, incremental],sourceDefinedCursor=true,defaultCursorField=[updated_at],sourceDefinedPrimaryKey=[[id]],namespace=,additionalProperties={}],syncMode=incremental,cursorField=[updated_at],destinationSyncMode=append_dedup,primaryKey=[[id]],additionalProperties={}], io.airbyte.protocol.models.ConfiguredAirbyteStream@11d16f6[stream=io.airbyte.protocol.models.AirbyteStream@6a5266b9[name=ticket_metric_events,jsonSchema={"type":["null","object"],"properties":{"id":{"type":["null","integer"]},"time":{"type":["null","string"]},"type":{"type":["null","string"]},"metric":{"type":["null","string"]},"ticket_id":{"type":["null","integer"]},"instance_id":{"type":["null","integer"]}}},supportedSyncModes=[full_refresh, incremental],sourceDefinedCursor=true,defaultCursorField=[time],sourceDefinedPrimaryKey=[[id]],namespace=,additionalProperties={}],syncMode=incremental,cursorField=[time],destinationSyncMode=append_dedup,primaryKey=[[id]],additionalProperties={}], io.airbyte.protocol.models.ConfiguredAirbyteStream@3c089be0[stream=io.airbyte.protocol.models.AirbyteStream@4cec5c5d[name=ticket_metrics,jsonSchema={"type":["null","object"],"properties":{"id":{"type":["null","integer"]},"url":{"type":["null","string"]},"time":{"type":["null","string"]},"type":{"type":["null","string"]},"metric":{"type":["null","string"]},"status":{"type":["null","object"],"properties":{"business":{"type":["null","integer"]},"calendar":{"type":["null","integer"]}}},"reopens":{"type":["null","integer"]},"replies":{"type":["null","integer"]},"solved_at":{"type":["null","string"],"format":"date-time"},"ticket_id":{"type":["null","integer"]},"created_at":{"type":["null","string"],"format":"date-time"},"updated_at":{"type":["null","string"],"format":"date-time"},"assigned_at":{"type":["null","string"],"format":"date-time"},"instance_id":{"type":["null","integer"]},"group_stations":{"type":["null","integer"]},"assignee_stations":{"type":["null","integer"]},"status_updated_at":{"type":["null","string"],"format":"date-time"},"assignee_updated_at":{"type":["null","string"],"format":"date-time"},"requester_updated_at":{"type":["null","string"],"format":"date-time"},"initially_assigned_at":{"type":["null","string"],"format":"date-time"},"reply_time_in_minutes":{"type":["null","object"],"properties":{"business":{"type":["null","integer"]},"calendar":{"type":["null","integer"]}}},"latest_comment_added_at":{"type":["null","string"],"format":"date-time"},"on_hold_time_in_minutes":{"type":["null","object"],"properties":{"business":{"type":["null","integer"]},"calendar":{"type":["null","integer"]}}},"agent_wait_time_in_minutes":{"type":["null","object"],"properties":{"business":{"type":["null","integer"]},"calendar":{"type":["null","integer"]}}},"requester_wait_time_in_minutes":{"type":["null","object"],"properties":{"business":{"type":["null","integer"]},"calendar":{"type":["null","integer"]}}},"full_resolution_time_in_minutes":{"type":["null","object"],"properties":{"business":{"type":["null","integer"]},"calendar":{"type":["null","integer"]}}},"first_resolution_time_in_minutes":{"type":["null","object"],"properties":{"business":{"type":["null","integer"]},"calendar":{"type":["null","integer"]}}}}},supportedSyncModes=[full_refresh, incremental],sourceDefinedCursor=true,defaultCursorField=[updated_at],sourceDefinedPrimaryKey=[[id]],namespace=,additionalProperties={}],syncMode=incremental,cursorField=[updated_at],destinationSyncMode=append_dedup,primaryKey=[[id]],additionalProperties={}], io.airbyte.protocol.models.ConfiguredAirbyteStream@252f5990[stream=io.airbyte.protocol.models.AirbyteStream@5cb19422[name=tickets,jsonSchema={"type":["null","object"],"properties":{"id":{"type":["null","integer"]},"url":{"type":["null","string"]},"via":{"type":["null","object"],"properties":{"source":{"type":["null","object"],"properties":{"to":{"type":["null","object"],"properties":{"name":{"type":["null","string"]},"phone":{"type":["null","string"]},"address":{"type":["null","string"]},"username":{"type":["null","string"]},"email_ccs":{"type":["null","string"]},"facebook_id":{"type":["null","string"]},"profile_url":{"type":["null","string"]},"formatted_phone":{"type":["null","string"]}}},"rel":{"type":["null","string"]},"from":{"type":["null","object"],"properties":{"id":{"type":["null","integer"]},"name":{"type":["null","string"]},"phone":{"type":["null","string"]},"title":{"type":["null","string"]},"address":{"type":["null","string"]},"deleted":{"type":["null","boolean"]},"subject":{"type":["null","string"]},"topic_id":{"type":["null","integer"]},"username":{"type":["null","string"]},"ticket_id":{"type":["null","integer"]},"topic_name":{"type":["null","string"]},"facebook_id":{"type":["null","string"]},"profile_url":{"type":["null","string"]},"revision_id":{"type":["null","integer"]},"formatted_phone":{"type":["null","string"]},"original_recipients":{"type":["null","array"],"items":{"type":["null","string"]}}}}}},"channel":{"type":["null","string"]}}},"tags":{"type":["null","array"],"items":{"type":["null","string"]}},"type":{"type":["null","string"]},"due_at":{"type":["null","string"],"format":"date-time"},"status":{"type":["null","string"]},"subject":{"type":["null","string"]},"brand_id":{"type":["null","integer"]},"group_id":{"type":["null","integer"]},"priority":{"type":["null","string"]},"is_public":{"type":["null","boolean"]},"recipient":{"type":["null","string"]},"created_at":{"type":["null","string"],"format":"date-time"},"problem_id":{"type":["null","integer"]},"updated_at":{"type":["null","string"],"format":"date-time"},"assignee_id":{"type":["null","integer"]},"description":{"type":["null","string"]},"external_id":{"type":["null","string"]},"raw_subject":{"type":["null","string"]},"email_cc_ids":{"type":["null","array"],"items":{"type":["null","integer"]}},"follower_ids":{"type":["null","array"],"items":{"type":["null","integer"]}},"followup_ids":{"type":["null","array"],"items":{"type":["null","integer"]}},"requester_id":{"type":["null","integer"]},"submitter_id":{"type":["null","integer"]},"custom_fields":{"type":["null","array"],"items":{"type":["null","object"],"properties":{"id":{"type":["null","integer"]},"value":{"type":["null","string"]}}}},"has_incidents":{"type":["null","boolean"]},"forum_topic_id":{"type":["null","integer"]},"ticket_form_id":{"type":["null","integer"]},"organization_id":{"type":["null","integer"]},"collaborator_ids":{"type":["null","array"],"items":{"type":["null","integer"]}},"allow_attachments":{"type":["null","boolean"]},"allow_channelback":{"type":["null","boolean"]},"generated_timestamp":{"type":["null","integer"]},"satisfaction_rating":{"type":["null","object","string"],"properties":{"id":{"type":["null","integer"]},"url":{"type":["null","string"]},"score":{"type":["null","string"]},"reason":{"type":["null","string"]},"comment":{"type":["null","string"]},"group_id":{"type":["null","integer"]},"reason_id":{"type":["null","integer"]},"ticket_id":{"type":["null","integer"]},"created_at":{"type":["null","string"],"format":"date-time"},"updated_at":{"type":["null","string"],"format":"date-time"},"assignee_id":{"type":["null","integer"]},"requester_id":{"type":["null","integer"]}}},"sharing_agreement_ids":{"type":["null","array"],"items":{"type":["null","integer"]}}}},supportedSyncModes=[full_refresh, incremental],sourceDefinedCursor=true,defaultCursorField=[updated_at],sourceDefinedPrimaryKey=[[id]],namespace=,additionalProperties={}],syncMode=incremental,cursorField=[updated_at],destinationSyncMode=append_dedup,primaryKey=[[id]],additionalProperties={}]],additionalProperties={}],failures=[io.airbyte.config.FailureReason@241ec3cf[failureOrigin=source,failureType=,internalMessage=io.airbyte.workers.DefaultReplicationWorker$SourceException: Source process exited with non-zero exit code 1,externalMessage=Something went wrong within the source connector,metadata=io.airbyte.config.Metadata@a3e6da5[additionalProperties={attemptNumber=0, jobId=37}],stacktrace=java.util.concurrent.CompletionException: io.airbyte.workers.DefaultReplicationWorker$SourceException: Source process exited with non-zero exit code 1 at java.base/java.util.concurrent.CompletableFuture.encodeThrowable(CompletableFuture.java:315) at java.base/java.util.concurrent.CompletableFuture.completeThrowable(CompletableFuture.java:320) at java.base/java.util.concurrent.CompletableFuture$AsyncRun.run(CompletableFuture.java:1807) at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136) at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635) at java.base/java.lang.Thread.run(Thread.java:833) Caused by: io.airbyte.workers.DefaultReplicationWorker$SourceException: Source process exited with non-zero exit code 1 at io.airbyte.workers.DefaultReplicationWorker.lambda$getReplicationRunnable$5(DefaultReplicationWorker.java:310) at java.base/java.util.concurrent.CompletableFuture$AsyncRun.run(CompletableFuture.java:1804) ... 3 more ,retryable=,timestamp=1650373997433]]] 2022-04-19 13:13:47 INFO i.a.w.t.TemporalUtils(withBackgroundHeartbeat):234 - Stopping temporal heartbeating... 2022-04-19 13:13:48 INFO i.a.c.p.ConfigRepository(updateConnectionState):545 - Updating connection b50f36e6-70ca-4384-bd12-93d1f650e999 state: io.airbyte.config.State@57906371[state={"ticket_fields":{"updated_at":"2022-04-14T06:20:39Z"},"ticket_metric_events":{"time":"2022-04-19T10:29:34Z"}}] 2022-04-19 13:13:48 INFO i.a.w.t.TemporalAttemptExecution(get):105 - Docker volume job log path: /tmp/workspace/37/0/logs.log 2022-04-19 13:13:48 INFO i.a.w.t.TemporalAttemptExecution(get):110 - Executing worker wrapper. Airbyte version: 0.35.30-alpha 2022-04-19 13:13:48 INFO i.a.w.DefaultNormalizationWorker(run):46 - Running normalization. 2022-04-19 13:13:48 INFO i.a.w.n.DefaultNormalizationRunner(runProcess):122 - Running with normalization version: airbyte/normalization:0.1.66 2022-04-19 13:13:48 INFO i.a.c.i.LineGobbler(voidCall):82 - Checking if airbyte/normalization:0.1.66 exists... 2022-04-19 13:13:49 INFO i.a.c.i.LineGobbler(voidCall):82 - airbyte/normalization:0.1.66 was found locally. 2022-04-19 13:13:49 INFO i.a.w.p.DockerProcessFactory(create):157 - Preparing command: docker run --rm --init -i -w /data/37/0/normalize --log-driver none --network host -v airbyte_workspace:/data -v /tmp/airbyte_local:/local airbyte/normalization:0.1.66 run --integration-type redshift --config destination_config.json --catalog destination_catalog.json 2022-04-19 13:13:52 normalization > Running: transform-config --config destination_config.json --integration-type redshift --out /data/37/0/normalize 2022-04-19 13:13:55 normalization > Namespace(config='destination_config.json', integration_type=, out='/data/37/0/normalize') 2022-04-19 13:13:55 normalization > transform_redshift 2022-04-19 13:13:55 normalization > Running: transform-catalog --integration-type redshift --profile-config-dir /data/37/0/normalize --catalog destination_catalog.json --out /data/37/0/normalize/models/generated/ --json-column _airbyte_data 2022-04-19 13:14:03 normalization > Processing destination_catalog.json... 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/brands_ab1.sql from brands 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/brands_ab2.sql from brands 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/brands_ab3.sql from brands 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/brands.sql from brands 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/sla_policies_ab1.sql from sla_policies 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/sla_policies_ab2.sql from sla_policies 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/sla_policies_ab3.sql from sla_policies 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/sla_policies.sql from sla_policies 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/tags_ab1.sql from tags 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/tags_ab2.sql from tags 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/tags_ab3.sql from tags 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/tags.sql from tags 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_fields_ab1.sql from ticket_fields 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_fields_ab2.sql from ticket_fields 2022-04-19 13:14:03 normalization > Generating airbyte_views/zendesk/ticket_fields_stg.sql from ticket_fields 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/scd/zendesk/ticket_fields_scd.sql from ticket_fields 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/ticket_fields.sql from ticket_fields 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metric_events_ab1.sql from ticket_metric_events 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metric_events_ab2.sql from ticket_metric_events 2022-04-19 13:14:03 normalization > Generating airbyte_views/zendesk/ticket_metric_events_stg.sql from ticket_metric_events 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/scd/zendesk/ticket_metric_events_scd.sql from ticket_metric_events 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/ticket_metric_events.sql from ticket_metric_events 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_ab1.sql from ticket_metrics 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_ab2.sql from ticket_metrics 2022-04-19 13:14:03 normalization > Generating airbyte_views/zendesk/ticket_metrics_stg.sql from ticket_metrics 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/scd/zendesk/ticket_metrics_scd.sql from ticket_metrics 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/ticket_metrics.sql from ticket_metrics 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/tickets_ab1.sql from tickets 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/tickets_ab2.sql from tickets 2022-04-19 13:14:03 normalization > Generating airbyte_views/zendesk/tickets_stg.sql from tickets 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/scd/zendesk/tickets_scd.sql from tickets 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/tickets.sql from tickets 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/sla_policies_filter_ab1.sql from sla_policies/filter 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/sla_policies_filter_ab2.sql from sla_policies/filter 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/sla_policies_filter_ab3.sql from sla_policies/filter 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/sla_policies_filter.sql from sla_policies/filter 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/sla_policies_policy_metrics_ab1.sql from sla_policies/policy_metrics 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/sla_policies_policy_metrics_ab2.sql from sla_policies/policy_metrics 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/sla_policies_policy_metrics_ab3.sql from sla_policies/policy_metrics 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/sla_policies_policy_metrics.sql from sla_policies/policy_metrics 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_fields_custom_field_options_ab1.sql from ticket_fields/custom_field_options 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_fields_custom_field_options_ab2.sql from ticket_fields/custom_field_options 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_fields_custom_field_options_ab3.sql from ticket_fields/custom_field_options 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/ticket_fields_custom_field_options.sql from ticket_fields/custom_field_options 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_status_ab1.sql from ticket_metrics/status 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_status_ab2.sql from ticket_metrics/status 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_status_ab3.sql from ticket_metrics/status 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/ticket_metrics_status.sql from ticket_metrics/status 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_reply_time_in_minutes_ab1.sql from ticket_metrics/reply_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_reply_time_in_minutes_ab2.sql from ticket_metrics/reply_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_reply_time_in_minutes_ab3.sql from ticket_metrics/reply_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/ticket_metrics_reply_time_in_minutes.sql from ticket_metrics/reply_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_on_hold_time_in_minutes_ab1.sql from ticket_metrics/on_hold_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_on_hold_time_in_minutes_ab2.sql from ticket_metrics/on_hold_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_on_hold_time_in_minutes_ab3.sql from ticket_metrics/on_hold_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/ticket_metrics_on_hold_time_in_minutes.sql from ticket_metrics/on_hold_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_agent_wait_time_in_minutes_ab1.sql from ticket_metrics/agent_wait_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_agent_wait_time_in_minutes_ab2.sql from ticket_metrics/agent_wait_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_agent_wait_time_in_minutes_ab3.sql from ticket_metrics/agent_wait_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/ticket_metrics_agent_wait_time_in_minutes.sql from ticket_metrics/agent_wait_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_requester_wait_time_in_minutes_ab1.sql from ticket_metrics/requester_wait_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_requester_wait_time_in_minutes_ab2.sql from ticket_metrics/requester_wait_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_requester_wait_time_in_minutes_ab3.sql from ticket_metrics/requester_wait_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/ticket_metrics_requester_wait_time_in_minutes.sql from ticket_metrics/requester_wait_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_full_resolution_time_in_minutes_ab1.sql from ticket_metrics/full_resolution_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_full_resolution_time_in_minutes_ab2.sql from ticket_metrics/full_resolution_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_full_resolution_time_in_minutes_ab3.sql from ticket_metrics/full_resolution_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/ticket_metrics_full_resolution_time_in_minutes.sql from ticket_metrics/full_resolution_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_first_resolution_time_in_minutes_ab1.sql from ticket_metrics/first_resolution_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_first_resolution_time_in_minutes_ab2.sql from ticket_metrics/first_resolution_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/ticket_metrics_first_resolution_time_in_minutes_ab3.sql from ticket_metrics/first_resolution_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/ticket_metrics_first_resolution_time_in_minutes.sql from ticket_metrics/first_resolution_time_in_minutes 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/tickets_via_ab1.sql from tickets/via 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/tickets_via_ab2.sql from tickets/via 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/tickets_via_ab3.sql from tickets/via 2022-04-19 13:14:03 normalization > Generating airbyte_incremental/zendesk/tickets_via.sql from tickets/via 2022-04-19 13:14:03 normalization > Ignoring stream 'tags' from tickets/tags because properties list is empty 2022-04-19 13:14:03 normalization > Ignoring stream 'email_cc_ids' from tickets/email_cc_ids because properties list is empty 2022-04-19 13:14:03 normalization > Ignoring stream 'follower_ids' from tickets/follower_ids because properties list is empty 2022-04-19 13:14:03 normalization > Ignoring stream 'followup_ids' from tickets/followup_ids because properties list is empty 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/tickets_custom_fields_ab1.sql from tickets/custom_fields 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/tickets_custom_fields_ab2.sql from tickets/custom_fields 2022-04-19 13:14:03 normalization > Generating airbyte_ctes/zendesk/tickets_custom_fields_ab3.sql from tickets/custom_fields 2022-04-19 13:14:05 normalization > Generating airbyte_incremental/zendesk/tickets_custom_fields.sql from tickets/custom_fields 2022-04-19 13:14:05 normalization > Ignoring stream 'collaborator_ids' from tickets/collaborator_ids because properties list is empty 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/tickets_satisfaction_rating_ab1.sql from tickets/satisfaction_rating 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/tickets_satisfaction_rating_ab2.sql from tickets/satisfaction_rating 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/tickets_satisfaction_rating_ab3.sql from tickets/satisfaction_rating 2022-04-19 13:14:05 normalization > Generating airbyte_incremental/zendesk/tickets_satisfaction_rating.sql from tickets/satisfaction_rating 2022-04-19 13:14:05 normalization > Ignoring stream 'sharing_agreement_ids' from tickets/sharing_agreement_ids because properties list is empty 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/sla_policies_filter_all_ab1.sql from sla_policies/filter/all 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/sla_policies_filter_all_ab2.sql from sla_policies/filter/all 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/sla_policies_filter_all_ab3.sql from sla_policies/filter/all 2022-04-19 13:14:05 normalization > Generating airbyte_incremental/zendesk/sla_policies_filter_all.sql from sla_policies/filter/all 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/sla_policies_filter_any_ab1.sql from sla_policies/filter/any 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/sla_policies_filter_any_ab2.sql from sla_policies/filter/any 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/sla_policies_filter_any_ab3.sql from sla_policies/filter/any 2022-04-19 13:14:05 normalization > Generating airbyte_incremental/zendesk/sla_policies_filter_any.sql from sla_policies/filter/any 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/tickets_via_source_ab1.sql from tickets/via/source 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/tickets_via_source_ab2.sql from tickets/via/source 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/tickets_via_source_ab3.sql from tickets/via/source 2022-04-19 13:14:05 normalization > Generating airbyte_incremental/zendesk/tickets_via_source.sql from tickets/via/source 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/tickets_via_source_to_ab1.sql from tickets/via/source/to 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/tickets_via_source_to_ab2.sql from tickets/via/source/to 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/tickets_via_source_to_ab3.sql from tickets/via/source/to 2022-04-19 13:14:05 normalization > Generating airbyte_incremental/zendesk/tickets_via_source_to.sql from tickets/via/source/to 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/tickets_via_source_from_ab1.sql from tickets/via/source/from 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/tickets_via_source_from_ab2.sql from tickets/via/source/from 2022-04-19 13:14:05 normalization > Generating airbyte_ctes/zendesk/tickets_via_source_from_ab3.sql from tickets/via/source/from 2022-04-19 13:14:05 normalization > Generating airbyte_incremental/zendesk/tickets_via_source_from.sql from tickets/via/source/from 2022-04-19 13:14:05 normalization > Ignoring stream 'original_recipients' from tickets/via/source/from/original_recipients because properties list is empty 2022-04-19 13:14:05 normalization > detected no config file for ssh, assuming ssh is off. 2022-04-19 13:14:29 normalization > Running with dbt=0.21.1 2022-04-19 13:14:34 normalization > Unable to do partial parsing because ../build/partial_parse.msgpack not found 2022-04-19 13:15:05 normalization > [WARNING]: Configuration paths exist in your dbt_project.yml file which do not apply to any resources. 2022-04-19 13:15:05 normalization > There are 1 unused configuration paths: 2022-04-19 13:15:05 normalization > - models.airbyte_utils.generated.airbyte_tables 2022-04-19 13:15:05 normalization > 2022-04-19 13:15:05 normalization > Found 104 models, 0 tests, 0 snapshots, 0 analyses, 520 macros, 0 operations, 0 seed files, 7 sources, 0 exposures 2022-04-19 13:15:06 normalization > 2022-04-19 13:15:06 normalization > 13:15:06 | Concurrency: 4 threads (target='prod') 2022-04-19 13:15:06 normalization > 13:15:06 | 2022-04-19 13:15:07 normalization > 13:15:07 | 1 of 33 START view model _airbyte_zendesk.ticket_metric_events_stg........................................... [RUN] 2022-04-19 13:15:07 normalization > 13:15:07 | 2 of 33 START incremental model zendesk.tags................................................................. [RUN] 2022-04-19 13:15:08 normalization > 13:15:08 | 4 of 33 START incremental model zendesk.sla_policies......................................................... [RUN] 2022-04-19 13:15:08 normalization > 13:15:08 | 3 of 33 START view model _airbyte_zendesk.ticket_fields_stg.................................................. [RUN] 2022-04-19 13:15:08 normalization > 13:15:08 | 1 of 33 OK created view model _airbyte_zendesk.ticket_metric_events_stg...................................... [CREATE VIEW in 1.07s] 2022-04-19 13:15:08 normalization > 13:15:08 | 5 of 33 START view model _airbyte_zendesk.ticket_metrics_stg................................................. [RUN] 2022-04-19 13:15:09 normalization > 13:15:09 | 3 of 33 OK created view model _airbyte_zendesk.ticket_fields_stg............................................. [CREATE VIEW in 1.26s] 2022-04-19 13:15:09 normalization > 13:15:09 | 6 of 33 START incremental model zendesk.brands............................................................... [RUN] 2022-04-19 13:15:09 normalization > 13:15:09 | 5 of 33 OK created view model _airbyte_zendesk.ticket_metrics_stg............................................ [CREATE VIEW in 1.14s] 2022-04-19 13:15:09 normalization > 13:15:09 | 7 of 33 START view model _airbyte_zendesk.tickets_stg........................................................ [RUN] 2022-04-19 13:15:10 normalization > 13:15:10 | 7 of 33 OK created view model _airbyte_zendesk.tickets_stg................................................... [CREATE VIEW in 0.61s] 2022-04-19 13:15:10 normalization > 13:15:10 | 8 of 33 START incremental model zendesk.ticket_metric_events_scd............................................. [RUN] 2022-04-19 13:15:12 normalization > 13:15:12 | 4 of 33 OK created incremental model zendesk.sla_policies.................................................... [INSERT 0 11 in 4.71s] 2022-04-19 13:15:12 normalization > 13:15:12 | 2 of 33 OK created incremental model zendesk.tags............................................................ [INSERT 0 196 in 5.10s] 2022-04-19 13:15:12 normalization > 13:15:12 | 9 of 33 START incremental model zendesk.ticket_fields_scd.................................................... [RUN] 2022-04-19 13:15:12 normalization > 13:15:12 | 10 of 33 START incremental model zendesk.ticket_metrics_scd.................................................. [RUN] 2022-04-19 13:15:13 normalization > 13:15:13 | 6 of 33 OK created incremental model zendesk.brands.......................................................... [INSERT 0 12 in 4.19s] 2022-04-19 13:15:13 normalization > 13:15:13 | 11 of 33 START incremental model zendesk.tickets_scd......................................................... [RUN] 2022-04-19 13:15:17 normalization > 13:15:17 | 8 of 33 OK created incremental model zendesk.ticket_metric_events_scd........................................ [INSERT 0 11088 in 7.48s] 2022-04-19 13:15:17 normalization > 13:15:17 | 12 of 33 START incremental model zendesk.ticket_metric_events................................................ [RUN] 2022-04-19 13:15:20 normalization > 13:15:20 | 11 of 33 ERROR creating incremental model zendesk.tickets_scd................................................ [ERROR in 6.47s] 2022-04-19 13:15:20 normalization > 13:15:20 | 13 of 33 SKIP relation zendesk.tickets....................................................................... [SKIP] 2022-04-19 13:15:20 normalization > 13:15:20 | 14 of 33 START incremental model zendesk.sla_policies_filter................................................. [RUN] 2022-04-19 13:15:20 normalization > 13:15:20 | 9 of 33 OK created incremental model zendesk.ticket_fields_scd............................................... [INSERT 0 28 in 7.84s] 2022-04-19 13:15:20 normalization > 13:15:20 | 15 of 33 START incremental model zendesk.sla_policies_policy_metrics......................................... [RUN] 2022-04-19 13:15:22 normalization > 13:15:22 | 12 of 33 OK created incremental model zendesk.ticket_metric_events........................................... [INSERT 0 163043 in 5.04s] 2022-04-19 13:15:22 normalization > 13:15:22 | 16 of 33 SKIP relation zendesk.tickets_custom_fields......................................................... [SKIP] 2022-04-19 13:15:22 normalization > 13:15:22 | 17 of 33 START incremental model zendesk.ticket_fields....................................................... [RUN] 2022-04-19 13:15:22 normalization > 13:15:22 | 14 of 33 OK created incremental model zendesk.sla_policies_filter............................................ [INSERT 0 11 in 2.82s] 2022-04-19 13:15:23 normalization > 13:15:23 | 18 of 33 SKIP relation zendesk.tickets_satisfaction_rating................................................... [SKIP] 2022-04-19 13:15:23 normalization > 13:15:23 | 19 of 33 SKIP relation zendesk.tickets_via................................................................... [SKIP] 2022-04-19 13:15:23 normalization > 13:15:23 | 20 of 33 START incremental model zendesk.ticket_fields_custom_field_options.................................. [RUN] 2022-04-19 13:15:23 normalization > 13:15:23 | 15 of 33 OK created incremental model zendesk.sla_policies_policy_metrics.................................... [INSERT 0 264 in 3.31s] 2022-04-19 13:15:23 normalization > 13:15:23 | 21 of 33 START incremental model zendesk.sla_policies_filter_all............................................. [RUN] 2022-04-19 13:15:27 normalization > 13:15:27 | 21 of 33 OK created incremental model zendesk.sla_policies_filter_all........................................ [INSERT 0 11 in 3.91s] 2022-04-19 13:15:27 normalization > 13:15:27 | 22 of 33 START incremental model zendesk.sla_policies_filter_any............................................. [RUN] 2022-04-19 13:15:28 normalization > 13:15:28 | 20 of 33 OK created incremental model zendesk.ticket_fields_custom_field_options............................. [INSERT 0 202 in 4.43s] 2022-04-19 13:15:28 normalization > 13:15:28 | 23 of 33 SKIP relation zendesk.tickets_via_source............................................................ [SKIP] 2022-04-19 13:15:28 normalization > 13:15:28 | 24 of 33 SKIP relation zendesk.tickets_via_source_from....................................................... [SKIP] 2022-04-19 13:15:28 normalization > 13:15:28 | 25 of 33 SKIP relation zendesk.tickets_via_source_to......................................................... [SKIP] 2022-04-19 13:15:29 normalization > 13:15:29 | 10 of 33 OK created incremental model zendesk.ticket_metrics_scd............................................. [INSERT 0 29506 in 17.19s] 2022-04-19 13:15:29 normalization > 13:15:29 | 26 of 33 START incremental model zendesk.ticket_metrics...................................................... [RUN] 2022-04-19 13:15:30 normalization > 13:15:30 | 27 of 33 START incremental model zendesk.ticket_metrics_agent_wait_time_in_minutes........................... [RUN] 2022-04-19 13:15:31 normalization > 13:15:31 | 22 of 33 OK created incremental model zendesk.sla_policies_filter_any........................................ [INSERT 0 11 in 3.85s] 2022-04-19 13:15:31 normalization > 13:15:31 | 28 of 33 START incremental model zendesk.ticket_metrics_first_resolution_time_in_minutes..................... [RUN] 2022-04-19 13:15:36 normalization > 13:15:36 | 26 of 33 OK created incremental model zendesk.ticket_metrics................................................. [INSERT 0 17020 in 6.19s] 2022-04-19 13:15:36 normalization > 13:15:36 | 27 of 33 OK created incremental model zendesk.ticket_metrics_agent_wait_time_in_minutes...................... [INSERT 0 67745 in 5.78s] 2022-04-19 13:15:36 normalization > 13:15:36 | 29 of 33 START incremental model zendesk.ticket_metrics_full_resolution_time_in_minutes...................... [RUN] 2022-04-19 13:15:36 normalization > 13:15:36 | 30 of 33 START incremental model zendesk.ticket_metrics_on_hold_time_in_minutes.............................. [RUN] 2022-04-19 13:15:38 normalization > 13:15:38 | 28 of 33 OK created incremental model zendesk.ticket_metrics_first_resolution_time_in_minutes................ [INSERT 0 67745 in 6.54s] 2022-04-19 13:15:38 normalization > 13:15:38 | 17 of 33 OK created incremental model zendesk.ticket_fields.................................................. [INSERT 0 14 in 15.42s] 2022-04-19 13:15:38 normalization > 13:15:38 | 31 of 33 START incremental model zendesk.ticket_metrics_reply_time_in_minutes................................ [RUN] 2022-04-19 13:15:38 normalization > 13:15:38 | 32 of 33 START incremental model zendesk.ticket_metrics_requester_wait_time_in_minutes....................... [RUN] 2022-04-19 13:15:41 normalization > 13:15:41 | 29 of 33 OK created incremental model zendesk.ticket_metrics_full_resolution_time_in_minutes................. [INSERT 0 67745 in 5.22s] 2022-04-19 13:15:41 normalization > 13:15:41 | 33 of 33 START incremental model zendesk.ticket_metrics_status............................................... [RUN] 2022-04-19 13:15:41 normalization > 13:15:41 | 30 of 33 OK created incremental model zendesk.ticket_metrics_on_hold_time_in_minutes......................... [INSERT 0 67745 in 5.41s] 2022-04-19 13:15:42 normalization > 13:15:42 | 32 of 33 OK created incremental model zendesk.ticket_metrics_requester_wait_time_in_minutes.................. [INSERT 0 67745 in 4.37s] 2022-04-19 13:15:43 normalization > 13:15:43 | 31 of 33 OK created incremental model zendesk.ticket_metrics_reply_time_in_minutes........................... [INSERT 0 67745 in 4.83s] 2022-04-19 13:15:43 normalization > 13:15:43 | 33 of 33 OK created incremental model zendesk.ticket_metrics_status.......................................... [INSERT 0 0 in 2.29s] 2022-04-19 13:15:43 normalization > 13:15:43 | 2022-04-19 13:15:43 normalization > 13:15:43 | Finished running 4 view models, 29 incremental models in 37.71s. 2022-04-19 13:15:43 normalization > 2022-04-19 13:15:43 normalization > Completed with 1 error and 0 warnings: 2022-04-19 13:15:43 normalization > 2022-04-19 13:15:43 normalization > Database Error in model tickets_scd (models/generated/airbyte_incremental/scd/zendesk/tickets_scd.sql) 2022-04-19 13:15:43 normalization > column "_airbyte_start_at__dbt_alter" is of type timestamp with time zone but expression is of type bigint 2022-04-19 13:15:43 normalization > HINT: You will need to rewrite or cast the expression. 2022-04-19 13:15:43 normalization > 2022-04-19 13:15:43 normalization > Done. PASS=25 WARN=0 ERROR=1 SKIP=7 TOTAL=33 2022-04-19 13:15:43 normalization > 2022-04-19 13:15:43 normalization > Diagnosing dbt debug to check if destination is available for dbt and well configured (1): 2022-04-19 13:15:43 normalization > 2022-04-19 13:15:46 normalization > Running with dbt=0.21.1 2022-04-19 13:15:46 normalization > dbt version: 0.21.1 2022-04-19 13:15:46 normalization > python version: 3.8.12 2022-04-19 13:15:46 normalization > python path: /usr/local/bin/python 2022-04-19 13:15:46 normalization > os info: Linux-5.10.75-79.358.amzn2.x86_64-x86_64-with-glibc2.2.5 2022-04-19 13:15:46 normalization > Using profiles.yml file at /data/37/0/normalize/profiles.yml 2022-04-19 13:15:46 normalization > Using dbt_project.yml file at /data/37/0/normalize/dbt_project.yml 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > Configuration: 2022-04-19 13:15:46 normalization > profiles.yml file [OK found and valid] 2022-04-19 13:15:46 normalization > dbt_project.yml file [OK found and valid] 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > Required dependencies: 2022-04-19 13:15:46 normalization > - git [OK found] 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > Connection: 2022-04-19 13:15:46 normalization > host: travlr-data-lake.cs2yeo76upoy.ap-southeast-2.redshift.amazonaws.com 2022-04-19 13:15:46 normalization > port: 5439 2022-04-19 13:15:46 normalization > user: travlrdatamaster 2022-04-19 13:15:46 normalization > database: datalake 2022-04-19 13:15:46 normalization > schema: zendesk 2022-04-19 13:15:46 normalization > search_path: None 2022-04-19 13:15:46 normalization > keepalives_idle: 240 2022-04-19 13:15:46 normalization > sslmode: None 2022-04-19 13:15:46 normalization > method: database 2022-04-19 13:15:46 normalization > cluster_id: None 2022-04-19 13:15:46 normalization > iam_profile: None 2022-04-19 13:15:46 normalization > iam_duration_seconds: 900 2022-04-19 13:15:46 normalization > Connection test: [OK connection ok] 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > All checks passed! 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > Forward dbt output logs to diagnose/debug errors (0): 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:29.881321 (MainThread): Running with dbt=0.21.1 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:34.361962 (MainThread): running dbt with arguments Namespace(cls=, debug=False, defer=None, exclude=None, fail_fast=False, full_refresh=False, log_cache_events=False, log_format='default', partial_parse=None, profile=None, profiles_dir='/data/37/0/normalize', project_dir='/data/37/0/normalize', record_timing_info=None, rpc_method='run', select=None, selector_name=None, single_threaded=False, state=None, strict=False, target=None, test_new_parser=False, threads=None, use_cache=True, use_colors=None, use_experimental_parser=False, vars='{}', version_check=True, warn_error=False, which='run', write_json=True) 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:34.362635 (MainThread): Tracking: do not track 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:34.755234 (MainThread): Unable to do partial parsing because ../build/partial_parse.msgpack not found 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:35.502124 (MainThread): Parsing macros/get_custom_schema.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:35.503431 (MainThread): Parsing macros/incremental.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:35.754317 (MainThread): Parsing macros/should_full_refresh.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:35.846395 (MainThread): Parsing macros/star_intersect.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:35.940426 (MainThread): Parsing macros/cross_db_utils/array.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:36.133429 (MainThread): Parsing macros/cross_db_utils/concat.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:36.157035 (MainThread): Parsing macros/cross_db_utils/current_timestamp.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:36.158042 (MainThread): Parsing macros/cross_db_utils/datatypes.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:36.257137 (MainThread): Parsing macros/cross_db_utils/except.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:36.289892 (MainThread): Parsing macros/cross_db_utils/hash.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:36.323798 (MainThread): Parsing macros/cross_db_utils/json_operations.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:36.743504 (MainThread): Parsing macros/cross_db_utils/quote.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:36.745712 (MainThread): Parsing macros/cross_db_utils/surrogate_key.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:36.766573 (MainThread): Parsing macros/cross_db_utils/type_conversions.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:36.792765 (MainThread): Parsing macros/schema_tests/equal_rowcount.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:36.819060 (MainThread): Parsing macros/schema_tests/equality.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:36.903273 (MainThread): Parsing macros/adapters.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:37.153497 (MainThread): Parsing macros/catalog.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:37.324468 (MainThread): Parsing macros/relations.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:37.325465 (MainThread): Parsing macros/materializations/snapshot_merge.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:37.326287 (MainThread): Parsing macros/adapters.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:37.631218 (MainThread): Parsing macros/catalog.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:37.689201 (MainThread): Parsing macros/relations.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:37.738456 (MainThread): Parsing macros/materializations/snapshot_merge.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:37.740788 (MainThread): Parsing macros/core.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:37.800913 (MainThread): Parsing macros/adapters/common.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:38.600956 (MainThread): Parsing macros/etc/datetime.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:38.726195 (MainThread): Parsing macros/etc/get_custom_alias.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:38.728337 (MainThread): Parsing macros/etc/get_custom_database.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:38.751011 (MainThread): Parsing macros/etc/get_custom_schema.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:38.795617 (MainThread): Parsing macros/etc/is_incremental.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:38.820500 (MainThread): Parsing macros/etc/query.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:38.821975 (MainThread): Parsing macros/etc/where_subquery.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:38.861486 (MainThread): Parsing macros/materializations/helpers.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:39.132595 (MainThread): Parsing macros/materializations/test.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:39.282257 (MainThread): Parsing macros/materializations/common/merge.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:39.537136 (MainThread): Parsing macros/materializations/incremental/helpers.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:39.576373 (MainThread): Parsing macros/materializations/incremental/incremental.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:39.755842 (MainThread): Parsing macros/materializations/incremental/on_schema_change.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:40.121001 (MainThread): Parsing macros/materializations/seed/seed.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:40.439822 (MainThread): Parsing macros/materializations/snapshot/snapshot.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:40.932851 (MainThread): Parsing macros/materializations/snapshot/snapshot_merge.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:40.972500 (MainThread): Parsing macros/materializations/snapshot/strategies.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:41.364332 (MainThread): Parsing macros/materializations/table/table.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:41.463813 (MainThread): Parsing macros/materializations/view/create_or_replace_view.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:41.517545 (MainThread): Parsing macros/materializations/view/view.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:41.727903 (MainThread): Parsing macros/schema_tests/accepted_values.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:41.792696 (MainThread): Parsing macros/schema_tests/not_null.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:41.817539 (MainThread): Parsing macros/schema_tests/relationships.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:41.833466 (MainThread): Parsing macros/schema_tests/unique.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:41.844474 (MainThread): Parsing macros/cross_db_utils/_is_ephemeral.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:41.856181 (MainThread): Parsing macros/cross_db_utils/_is_relation.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:41.857834 (MainThread): Parsing macros/cross_db_utils/cast_bool_to_text.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:41.884650 (MainThread): Parsing macros/cross_db_utils/concat.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:41.886137 (MainThread): Parsing macros/cross_db_utils/current_timestamp.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:41.903946 (MainThread): Parsing macros/cross_db_utils/datatypes.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.011410 (MainThread): Parsing macros/cross_db_utils/date_trunc.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.024090 (MainThread): Parsing macros/cross_db_utils/dateadd.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.053890 (MainThread): Parsing macros/cross_db_utils/datediff.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.115768 (MainThread): Parsing macros/cross_db_utils/except.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.117483 (MainThread): Parsing macros/cross_db_utils/hash.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.144152 (MainThread): Parsing macros/cross_db_utils/identifier.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.146580 (MainThread): Parsing macros/cross_db_utils/intersect.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.157253 (MainThread): Parsing macros/cross_db_utils/last_day.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.199161 (MainThread): Parsing macros/cross_db_utils/length.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.201080 (MainThread): Parsing macros/cross_db_utils/literal.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.202375 (MainThread): Parsing macros/cross_db_utils/position.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.278098 (MainThread): Parsing macros/cross_db_utils/replace.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.279914 (MainThread): Parsing macros/cross_db_utils/right.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.282936 (MainThread): Parsing macros/cross_db_utils/safe_cast.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.314781 (MainThread): Parsing macros/cross_db_utils/split_part.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.343742 (MainThread): Parsing macros/cross_db_utils/width_bucket.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.483938 (MainThread): Parsing macros/jinja_helpers/log_info.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.485661 (MainThread): Parsing macros/jinja_helpers/pretty_log_format.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.487421 (MainThread): Parsing macros/jinja_helpers/pretty_time.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.603597 (MainThread): Parsing macros/jinja_helpers/slugify.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:42.630215 (MainThread): Parsing macros/materializations/insert_by_period_materialization.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:43.012766 (MainThread): Parsing macros/schema_tests/accepted_range.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:43.081790 (MainThread): Parsing macros/schema_tests/at_least_one.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:43.083867 (MainThread): Parsing macros/schema_tests/cardinality_equality.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:43.135931 (MainThread): Parsing macros/schema_tests/equal_rowcount.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:43.162850 (MainThread): Parsing macros/schema_tests/equality.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:43.215726 (MainThread): Parsing macros/schema_tests/expression_is_true.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:43.325228 (MainThread): Parsing macros/schema_tests/fewer_rows_than.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:43.352082 (MainThread): Parsing macros/schema_tests/mutually_exclusive_ranges.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:43.654911 (MainThread): Parsing macros/schema_tests/not_accepted_values.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:43.764211 (MainThread): Parsing macros/schema_tests/not_constant.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:43.817358 (MainThread): Parsing macros/schema_tests/not_null_proportion.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:44.011205 (MainThread): Parsing macros/schema_tests/recency.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:44.022998 (MainThread): Parsing macros/schema_tests/relationships_where.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:44.120983 (MainThread): Parsing macros/schema_tests/sequential_values.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:44.219362 (MainThread): Parsing macros/schema_tests/test_not_null_where.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:44.348758 (MainThread): Parsing macros/schema_tests/test_unique_where.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:44.351019 (MainThread): Parsing macros/schema_tests/unique_combination_of_columns.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:44.372933 (MainThread): Parsing macros/sql/date_spine.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:44.588783 (MainThread): Parsing macros/sql/generate_series.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:44.719057 (MainThread): Parsing macros/sql/get_column_values.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:44.766616 (MainThread): Parsing macros/sql/get_query_results_as_dict.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:44.832420 (MainThread): Parsing macros/sql/get_relations_by_pattern.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:44.886192 (MainThread): Parsing macros/sql/get_relations_by_prefix.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:44.981465 (MainThread): Parsing macros/sql/get_tables_by_pattern_sql.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:45.151858 (MainThread): Parsing macros/sql/get_tables_by_prefix_sql.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:45.179118 (MainThread): Parsing macros/sql/groupby.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:45.181149 (MainThread): Parsing macros/sql/haversine_distance.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:45.316755 (MainThread): Parsing macros/sql/nullcheck.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:45.319280 (MainThread): Parsing macros/sql/nullcheck_table.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:45.321491 (MainThread): Parsing macros/sql/pivot.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:45.384184 (MainThread): Parsing macros/sql/safe_add.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:45.394973 (MainThread): Parsing macros/sql/star.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:45.464340 (MainThread): Parsing macros/sql/surrogate_key.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:45.503281 (MainThread): Parsing macros/sql/union.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:45.573642 (MainThread): Parsing macros/sql/unpivot.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:45.629970 (MainThread): Parsing macros/web/get_url_host.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:45.640934 (MainThread): Parsing macros/web/get_url_parameter.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:45.643781 (MainThread): Parsing macros/web/get_url_path.sql 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:48.713815 (MainThread): Acquiring new redshift connection "model.airbyte_utils.brands_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:49.108721 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:49.139031 (MainThread): Acquiring new redshift connection "model.airbyte_utils.brands_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:49.339273 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:49.341153 (MainThread): Acquiring new redshift connection "model.airbyte_utils.brands_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:49.507990 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:49.509954 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:49.662656 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:49.766728 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:49.768621 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:49.917875 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:49.940553 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:50.176369 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:50.201482 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tags_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:50.326303 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:50.368452 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tags_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:50.613983 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:50.615829 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tags_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:50.819253 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:50.821620 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_fields_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:51.351320 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:51.353280 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_fields_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:51.590691 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:51.593629 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metric_events_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:51.851669 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:51.853559 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metric_events_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:51.924383 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:51.943543 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:52.241108 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:52.391079 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:52.394358 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:52.395076 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:52.395766 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:52.420652 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:52.457993 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:52.461638 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:52.463411 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:52.664279 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:52.666268 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:52.985047 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:53.185852 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:53.188962 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:53.190724 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:53.569263 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:53.598144 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_filter_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:53.784136 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:53.825038 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_filter_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:53.949909 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:53.963152 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_filter_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:54.067340 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:54.069221 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_policy_metrics_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:54.367895 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:54.407281 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_policy_metrics_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:54.442578 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:54.489621 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_policy_metrics_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:54.628725 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:54.651057 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_fields_custom_field_options_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:54.856653 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:54.911193 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_fields_custom_field_options_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:54.964928 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:54.991631 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_fields_custom_field_options_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:55.074912 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:55.113937 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_status_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:55.297712 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:55.503147 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_status_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:55.633648 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:55.635560 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_status_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:55.845446 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:55.884113 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_reply_time_in_minutes_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:56.020605 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:56.064468 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_reply_time_in_minutes_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:56.159108 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:56.187593 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_reply_time_in_minutes_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:56.296221 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:56.298080 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_on_hold_time_in_minutes_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:56.933830 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:56.935902 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_on_hold_time_in_minutes_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:56.997891 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.024413 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_on_hold_time_in_minutes_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.066339 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.084401 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_agent_wait_time_in_minutes_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.217149 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.243509 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_agent_wait_time_in_minutes_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.277062 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.278908 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_agent_wait_time_in_minutes_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.435654 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.452020 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_requester_wait_time_in_minutes_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.516501 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.518455 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_requester_wait_time_in_minutes_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.569895 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.584496 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_requester_wait_time_in_minutes_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.615588 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.617510 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_full_resolution_time_in_minutes_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.707622 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.709572 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_full_resolution_time_in_minutes_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.810886 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.869919 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_full_resolution_time_in_minutes_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.953221 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:57.991972 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_first_resolution_time_in_minutes_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:58.102062 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:58.103979 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_first_resolution_time_in_minutes_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:58.207120 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:58.240439 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_first_resolution_time_in_minutes_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:58.393056 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:58.395062 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_via_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:58.452854 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:58.520756 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:58.537385 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_via_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:58.678497 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:58.741164 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_via_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:58.793263 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:58.842019 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_custom_fields_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:59.029877 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:59.031869 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_custom_fields_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:59.249606 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:59.251482 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_custom_fields_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:59.528939 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:59.531058 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_satisfaction_rating_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:59.880388 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:14:59.923605 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_satisfaction_rating_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.038093 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.073231 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_satisfaction_rating_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.126877 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.138376 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_filter_all_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.235770 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.237742 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_filter_all_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.305334 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.307255 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_filter_all_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.385177 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.387032 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_filter_any_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.482759 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.484690 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_filter_any_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.510081 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.524191 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_filter_any_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.566378 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.568170 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_via_source_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.617481 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.619146 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.634785 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.644966 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_via_source_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.688058 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.743203 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_via_source_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.856548 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:00.858389 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_via_source_to_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:01.166334 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:01.169032 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_via_source_to_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:01.347912 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:01.374402 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_via_source_to_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:01.455980 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:01.458159 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_via_source_from_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:01.896703 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:01.898552 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_via_source_from_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:02.078937 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:02.206256 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_via_source_from_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:02.416208 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:02.427221 (MainThread): Acquiring new redshift connection "model.airbyte_utils.brands". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:02.482541 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:02.484503 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:02.534559 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:02.536613 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tags". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:02.644386 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:02.646294 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_fields". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:02.700857 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:02.703450 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metric_events". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:02.824566 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:02.853504 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:02.960207 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:02.962316 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.106479 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.108574 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_filter". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.160231 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.162241 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_policy_metrics". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.260219 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.262082 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_fields_custom_field_options". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.331383 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.350137 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_status". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.446077 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.564660 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_reply_time_in_minutes". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.639935 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.717514 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_on_hold_time_in_minutes". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.795187 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.797365 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_agent_wait_time_in_minutes". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.842127 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.888922 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_requester_wait_time_in_minutes". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.960295 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:03.999048 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_full_resolution_time_in_minutes". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.067062 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.069093 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_first_resolution_time_in_minutes". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.130516 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.177448 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_via". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.234817 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.245537 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_custom_fields". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.305623 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.318135 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_satisfaction_rating". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.395508 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.397401 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_filter_all". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.480029 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.498049 (MainThread): Acquiring new redshift connection "model.airbyte_utils.sla_policies_filter_any". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.587486 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.589407 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_via_source". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.657478 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.667757 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_via_source_to". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.755511 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.779447 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_via_source_from". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.799781 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.818689 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.909319 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:04.927950 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:05.025972 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:05.036138 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_scd". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:05.098519 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:05.145555 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_scd". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:05.257737 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:05.301564 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_fields_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:05.324003 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:05.332737 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metric_events_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:05.348247 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:05.349993 (MainThread): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:05.394399 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:05.400926 (MainThread): Acquiring new redshift connection "model.airbyte_utils.tickets_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:05.450819 (MainThread): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:05.891730 (MainThread): [WARNING]: Configuration paths exist in your dbt_project.yml file which do not apply to any resources. 2022-04-19 13:15:46 normalization > There are 1 unused configuration paths: 2022-04-19 13:15:46 normalization > - models.airbyte_utils.generated.airbyte_tables 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:05.967631 (MainThread): write_gpickle is deprecated and will be removed in 3.0.Use ``pickle.dump(G, path, protocol)`` 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:05.985412 (MainThread): Found 104 models, 0 tests, 0 snapshots, 0 analyses, 520 macros, 0 operations, 0 seed files, 7 sources, 0 exposures 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.001517 (MainThread): 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.004695 (MainThread): Acquiring new redshift connection "master". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.007945 (ThreadPoolExecutor-0_0): Acquiring new redshift connection "list_datalake". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.032701 (ThreadPoolExecutor-0_1): Acquiring new redshift connection "list_datalake". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.059307 (ThreadPoolExecutor-0_0): Using redshift connection "list_datalake". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.073336 (ThreadPoolExecutor-0_0): On list_datalake: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "connection_name": "list_datalake"} */ 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > select distinct nspname from pg_namespace 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.073512 (ThreadPoolExecutor-0_0): Opening a new connection, currently in state init 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.073634 (ThreadPoolExecutor-0_0): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.073076 (ThreadPoolExecutor-0_1): Using redshift connection "list_datalake". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.074673 (ThreadPoolExecutor-0_1): On list_datalake: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "connection_name": "list_datalake"} */ 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > select distinct nspname from pg_namespace 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.074830 (ThreadPoolExecutor-0_1): Opening a new connection, currently in state init 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.074947 (ThreadPoolExecutor-0_1): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.114088 (ThreadPoolExecutor-0_0): SQL status: SELECT in 0.04 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.116289 (ThreadPoolExecutor-0_0): On list_datalake: Close 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.117078 (ThreadPoolExecutor-0_1): SQL status: SELECT in 0.04 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.118730 (ThreadPoolExecutor-0_1): On list_datalake: Close 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.122668 (ThreadPoolExecutor-1_0): Acquiring new redshift connection "list_datalake_zendesk". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.145704 (ThreadPoolExecutor-1_1): Acquiring new redshift connection "list_datalake__airbyte_zendesk". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.161261 (ThreadPoolExecutor-1_1): Using redshift connection "list_datalake__airbyte_zendesk". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.161769 (ThreadPoolExecutor-1_1): On list_datalake__airbyte_zendesk: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.161925 (ThreadPoolExecutor-1_1): Opening a new connection, currently in state closed 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.162042 (ThreadPoolExecutor-1_1): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.162685 (ThreadPoolExecutor-1_0): Using redshift connection "list_datalake_zendesk". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.162831 (ThreadPoolExecutor-1_0): On list_datalake_zendesk: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.163145 (ThreadPoolExecutor-1_0): Opening a new connection, currently in state closed 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.163263 (ThreadPoolExecutor-1_0): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.192682 (ThreadPoolExecutor-1_1): SQL status: BEGIN in 0.03 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.192962 (ThreadPoolExecutor-1_1): Using redshift connection "list_datalake__airbyte_zendesk". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.193091 (ThreadPoolExecutor-1_1): On list_datalake__airbyte_zendesk: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "connection_name": "list_datalake__airbyte_zendesk"} */ 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > 'datalake' as database, 2022-04-19 13:15:46 normalization > tablename as name, 2022-04-19 13:15:46 normalization > schemaname as schema, 2022-04-19 13:15:46 normalization > 'table' as type 2022-04-19 13:15:46 normalization > from pg_tables 2022-04-19 13:15:46 normalization > where schemaname ilike '_airbyte_zendesk' 2022-04-19 13:15:46 normalization > union all 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > 'datalake' as database, 2022-04-19 13:15:46 normalization > viewname as name, 2022-04-19 13:15:46 normalization > schemaname as schema, 2022-04-19 13:15:46 normalization > 'view' as type 2022-04-19 13:15:46 normalization > from pg_views 2022-04-19 13:15:46 normalization > where schemaname ilike '_airbyte_zendesk' 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.193812 (ThreadPoolExecutor-1_0): SQL status: BEGIN in 0.03 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.193960 (ThreadPoolExecutor-1_0): Using redshift connection "list_datalake_zendesk". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.194074 (ThreadPoolExecutor-1_0): On list_datalake_zendesk: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "connection_name": "list_datalake_zendesk"} */ 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > 'datalake' as database, 2022-04-19 13:15:46 normalization > tablename as name, 2022-04-19 13:15:46 normalization > schemaname as schema, 2022-04-19 13:15:46 normalization > 'table' as type 2022-04-19 13:15:46 normalization > from pg_tables 2022-04-19 13:15:46 normalization > where schemaname ilike 'zendesk' 2022-04-19 13:15:46 normalization > union all 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > 'datalake' as database, 2022-04-19 13:15:46 normalization > viewname as name, 2022-04-19 13:15:46 normalization > schemaname as schema, 2022-04-19 13:15:46 normalization > 'view' as type 2022-04-19 13:15:46 normalization > from pg_views 2022-04-19 13:15:46 normalization > where schemaname ilike 'zendesk' 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.241074 (ThreadPoolExecutor-1_1): SQL status: SELECT in 0.05 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.242803 (ThreadPoolExecutor-1_1): On list_datalake__airbyte_zendesk: ROLLBACK 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.246398 (ThreadPoolExecutor-1_1): On list_datalake__airbyte_zendesk: Close 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.249568 (ThreadPoolExecutor-1_0): SQL status: SELECT in 0.06 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.253534 (ThreadPoolExecutor-1_0): On list_datalake_zendesk: ROLLBACK 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.257342 (ThreadPoolExecutor-1_0): On list_datalake_zendesk: Close 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.280725 (MainThread): Using redshift connection "master". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.280942 (MainThread): On master: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.281085 (MainThread): Opening a new connection, currently in state init 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.281200 (MainThread): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.308279 (MainThread): SQL status: BEGIN in 0.03 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.308573 (MainThread): Using redshift connection "master". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.308704 (MainThread): On master: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "connection_name": "master"} */ 2022-04-19 13:15:46 normalization > with relation as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > pg_rewrite.ev_class as class, 2022-04-19 13:15:46 normalization > pg_rewrite.oid as id 2022-04-19 13:15:46 normalization > from pg_rewrite 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > class as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > oid as id, 2022-04-19 13:15:46 normalization > relname as name, 2022-04-19 13:15:46 normalization > relnamespace as schema, 2022-04-19 13:15:46 normalization > relkind as kind 2022-04-19 13:15:46 normalization > from pg_class 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > dependency as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > pg_depend.objid as id, 2022-04-19 13:15:46 normalization > pg_depend.refobjid as ref 2022-04-19 13:15:46 normalization > from pg_depend 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > schema as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > pg_namespace.oid as id, 2022-04-19 13:15:46 normalization > pg_namespace.nspname as name 2022-04-19 13:15:46 normalization > from pg_namespace 2022-04-19 13:15:46 normalization > where nspname != 'information_schema' and nspname not like 'pg\_%' 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > referenced as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > relation.id AS id, 2022-04-19 13:15:46 normalization > referenced_class.name , 2022-04-19 13:15:46 normalization > referenced_class.schema , 2022-04-19 13:15:46 normalization > referenced_class.kind 2022-04-19 13:15:46 normalization > from relation 2022-04-19 13:15:46 normalization > join class as referenced_class on relation.class=referenced_class.id 2022-04-19 13:15:46 normalization > where referenced_class.kind in ('r', 'v') 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > relationships as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > referenced.name as referenced_name, 2022-04-19 13:15:46 normalization > referenced.schema as referenced_schema_id, 2022-04-19 13:15:46 normalization > dependent_class.name as dependent_name, 2022-04-19 13:15:46 normalization > dependent_class.schema as dependent_schema_id, 2022-04-19 13:15:46 normalization > referenced.kind as kind 2022-04-19 13:15:46 normalization > from referenced 2022-04-19 13:15:46 normalization > join dependency on referenced.id=dependency.id 2022-04-19 13:15:46 normalization > join class as dependent_class on dependency.ref=dependent_class.id 2022-04-19 13:15:46 normalization > where 2022-04-19 13:15:46 normalization > (referenced.name != dependent_class.name or 2022-04-19 13:15:46 normalization > referenced.schema != dependent_class.schema) 2022-04-19 13:15:46 normalization > ) 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > referenced_schema.name as referenced_schema, 2022-04-19 13:15:46 normalization > relationships.referenced_name as referenced_name, 2022-04-19 13:15:46 normalization > dependent_schema.name as dependent_schema, 2022-04-19 13:15:46 normalization > relationships.dependent_name as dependent_name 2022-04-19 13:15:46 normalization > from relationships 2022-04-19 13:15:46 normalization > join schema as dependent_schema on relationships.dependent_schema_id=dependent_schema.id 2022-04-19 13:15:46 normalization > join schema as referenced_schema on relationships.referenced_schema_id=referenced_schema.id 2022-04-19 13:15:46 normalization > group by referenced_schema, referenced_name, dependent_schema, dependent_name 2022-04-19 13:15:46 normalization > order by referenced_schema, referenced_name, dependent_schema, dependent_name; 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.378022 (MainThread): SQL status: SELECT in 0.07 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.384766 (MainThread): On master: ROLLBACK 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.387677 (MainThread): Using redshift connection "master". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.387835 (MainThread): On master: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.393120 (MainThread): SQL status: BEGIN in 0.01 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.393305 (MainThread): On master: COMMIT 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.393436 (MainThread): Using redshift connection "master". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.393553 (MainThread): On master: COMMIT 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.396059 (MainThread): SQL status: COMMIT in 0.00 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.396226 (MainThread): On master: Close 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.396899 (MainThread): 13:15:06 | Concurrency: 4 threads (target='prod') 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.397401 (MainThread): 13:15:06 | 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.417670 (Thread-1): Began running node model.airbyte_utils.brands_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.418717 (Thread-1): Acquiring new redshift connection "model.airbyte_utils.brands_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.418911 (Thread-1): Compiling model.airbyte_utils.brands_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.417971 (Thread-2): Began running node model.airbyte_utils.sla_policies_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.446479 (Thread-2): Acquiring new redshift connection "model.airbyte_utils.sla_policies_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.446738 (Thread-2): Compiling model.airbyte_utils.sla_policies_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.460132 (Thread-3): Began running node model.airbyte_utils.tags_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.460661 (Thread-3): Acquiring new redshift connection "model.airbyte_utils.tags_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.460833 (Thread-3): Compiling model.airbyte_utils.tags_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.491478 (Thread-4): Began running node model.airbyte_utils.ticket_fields_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.492142 (Thread-4): Acquiring new redshift connection "model.airbyte_utils.ticket_fields_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.492356 (Thread-4): Compiling model.airbyte_utils.ticket_fields_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.622787 (Thread-3): Writing injected SQL for node "model.airbyte_utils.tags_ab1" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.623935 (Thread-3): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.624514 (Thread-3): Finished running node model.airbyte_utils.tags_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.624735 (Thread-3): Began running node model.airbyte_utils.ticket_metric_events_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.625090 (Thread-3): Acquiring new redshift connection "model.airbyte_utils.ticket_metric_events_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.625255 (Thread-3): Compiling model.airbyte_utils.ticket_metric_events_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.651905 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.682000 (Thread-3): Writing injected SQL for node "model.airbyte_utils.ticket_metric_events_ab1" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.715227 (Thread-3): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.715710 (Thread-3): Finished running node model.airbyte_utils.ticket_metric_events_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.715918 (Thread-3): Began running node model.airbyte_utils.ticket_metrics_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.716290 (Thread-3): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.716464 (Thread-3): Compiling model.airbyte_utils.ticket_metrics_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.714761 (Thread-2): Writing injected SQL for node "model.airbyte_utils.sla_policies_ab1" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.771805 (Thread-2): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.772317 (Thread-2): Finished running node model.airbyte_utils.sla_policies_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.772523 (Thread-2): Began running node model.airbyte_utils.tickets_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.772875 (Thread-2): Acquiring new redshift connection "model.airbyte_utils.tickets_ab1". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.773040 (Thread-2): Compiling model.airbyte_utils.tickets_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.771389 (Thread-1): Writing injected SQL for node "model.airbyte_utils.brands_ab1" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.796994 (Thread-1): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.797543 (Thread-1): Finished running node model.airbyte_utils.brands_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.752090 (Thread-4): Writing injected SQL for node "model.airbyte_utils.ticket_fields_ab1" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.803450 (Thread-4): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.803886 (Thread-4): Finished running node model.airbyte_utils.ticket_fields_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.804076 (Thread-4): Began running node model.airbyte_utils.ticket_metric_events_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.804779 (Thread-4): Acquiring new redshift connection "model.airbyte_utils.ticket_metric_events_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.804955 (Thread-4): Compiling model.airbyte_utils.ticket_metric_events_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.797754 (Thread-1): Began running node model.airbyte_utils.tags_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.825499 (Thread-1): Acquiring new redshift connection "model.airbyte_utils.tags_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.825722 (Thread-1): Compiling model.airbyte_utils.tags_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.964038 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.985455 (Thread-1): Writing injected SQL for node "model.airbyte_utils.tags_ab2" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.985997 (Thread-1): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.986538 (Thread-1): Finished running node model.airbyte_utils.tags_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.986774 (Thread-1): Began running node model.airbyte_utils.sla_policies_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.996729 (Thread-1): Acquiring new redshift connection "model.airbyte_utils.sla_policies_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.996941 (Thread-1): Compiling model.airbyte_utils.sla_policies_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.988974 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:06.992007 (Thread-4): Writing injected SQL for node "model.airbyte_utils.ticket_metric_events_ab2" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.072672 (Thread-4): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.073232 (Thread-4): Finished running node model.airbyte_utils.ticket_metric_events_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.073437 (Thread-4): Began running node model.airbyte_utils.brands_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.073786 (Thread-4): Acquiring new redshift connection "model.airbyte_utils.brands_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.073972 (Thread-4): Compiling model.airbyte_utils.brands_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.031609 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.090211 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.090966 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.091669 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.096494 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.117093 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.118648 (Thread-3): Writing injected SQL for node "model.airbyte_utils.ticket_metrics_ab1" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.119008 (Thread-3): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.119474 (Thread-3): Finished running node model.airbyte_utils.ticket_metrics_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.119700 (Thread-3): Began running node model.airbyte_utils.ticket_fields_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.155892 (Thread-3): Acquiring new redshift connection "model.airbyte_utils.ticket_fields_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.156092 (Thread-3): Compiling model.airbyte_utils.ticket_fields_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.140447 (Thread-1): Writing injected SQL for node "model.airbyte_utils.sla_policies_ab2" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.182279 (Thread-1): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.182765 (Thread-1): Finished running node model.airbyte_utils.sla_policies_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.182969 (Thread-1): Began running node model.airbyte_utils.tags_ab3 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.183324 (Thread-1): Acquiring new redshift connection "model.airbyte_utils.tags_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.183486 (Thread-1): Compiling model.airbyte_utils.tags_ab3 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.181811 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.202685 (Thread-2): Writing injected SQL for node "model.airbyte_utils.tickets_ab1" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.220694 (Thread-2): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.221272 (Thread-2): Finished running node model.airbyte_utils.tickets_ab1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.221485 (Thread-2): Began running node model.airbyte_utils.ticket_metric_events_stg 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.221865 (Thread-2): 13:15:07 | 1 of 33 START view model _airbyte_zendesk.ticket_metric_events_stg........................................... [RUN] 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.222444 (Thread-2): Acquiring new redshift connection "model.airbyte_utils.ticket_metric_events_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.222650 (Thread-2): Compiling model.airbyte_utils.ticket_metric_events_stg 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.263922 (Thread-1): Writing injected SQL for node "model.airbyte_utils.tags_ab3" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.332094 (Thread-1): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.332698 (Thread-1): Finished running node model.airbyte_utils.tags_ab3 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.332907 (Thread-1): Began running node model.airbyte_utils.ticket_metrics_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.333261 (Thread-1): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.333426 (Thread-1): Compiling model.airbyte_utils.ticket_metrics_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.411302 (Thread-4): Writing injected SQL for node "model.airbyte_utils.brands_ab2" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.412573 (Thread-2): Writing injected SQL for node "model.airbyte_utils.ticket_metric_events_stg" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.413117 (Thread-2): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.431666 (Thread-4): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.432306 (Thread-4): Finished running node model.airbyte_utils.brands_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.432525 (Thread-4): Began running node model.airbyte_utils.sla_policies_ab3 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.432889 (Thread-4): Acquiring new redshift connection "model.airbyte_utils.sla_policies_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.433057 (Thread-4): Compiling model.airbyte_utils.sla_policies_ab3 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.598488 (Thread-3): Writing injected SQL for node "model.airbyte_utils.ticket_fields_ab2" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.599005 (Thread-3): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.599569 (Thread-3): Finished running node model.airbyte_utils.ticket_fields_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.599811 (Thread-3): Began running node model.airbyte_utils.tickets_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.649692 (Thread-3): Acquiring new redshift connection "model.airbyte_utils.tickets_ab2". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.649886 (Thread-3): Compiling model.airbyte_utils.tickets_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.649072 (Thread-4): Writing injected SQL for node "model.airbyte_utils.sla_policies_ab3" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.667680 (Thread-4): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.668177 (Thread-4): Finished running node model.airbyte_utils.sla_policies_ab3 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.676651 (Thread-4): Began running node model.airbyte_utils.tags 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.677042 (Thread-4): 13:15:07 | 2 of 33 START incremental model zendesk.tags................................................................. [RUN] 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.678078 (Thread-4): Acquiring new redshift connection "model.airbyte_utils.tags". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.678264 (Thread-4): Compiling model.airbyte_utils.tags 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.667201 (Thread-2): Writing runtime SQL for node "model.airbyte_utils.ticket_metric_events_stg" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.721337 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.721554 (Thread-2): On model.airbyte_utils.ticket_metric_events_stg: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.721708 (Thread-2): Opening a new connection, currently in state closed 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.721837 (Thread-2): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.793045 (Thread-2): SQL status: BEGIN in 0.07 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.793326 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.793462 (Thread-2): On model.airbyte_utils.ticket_metric_events_stg: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_stg"} */ 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > create view "datalake"._airbyte_zendesk."ticket_metric_events_stg__dbt_tmp" as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > with __dbt__cte__ticket_metric_events_ab1 as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > -- SQL model to parse JSON blob stored in a single column and extract into separated field columns as described by the JSON Schema 2022-04-19 13:15:46 normalization > -- depends_on: "datalake".zendesk._airbyte_raw_ticket_metric_events 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'id', true) != '' then json_extract_path_text(_airbyte_data, 'id', true) end as id, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'time', true) != '' then json_extract_path_text(_airbyte_data, 'time', true) end as "time", 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'type', true) != '' then json_extract_path_text(_airbyte_data, 'type', true) end as type, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'metric', true) != '' then json_extract_path_text(_airbyte_data, 'metric', true) end as metric, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'ticket_id', true) != '' then json_extract_path_text(_airbyte_data, 'ticket_id', true) end as ticket_id, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'instance_id', true) != '' then json_extract_path_text(_airbyte_data, 'instance_id', true) end as instance_id, 2022-04-19 13:15:46 normalization > _airbyte_ab_id, 2022-04-19 13:15:46 normalization > _airbyte_emitted_at, 2022-04-19 13:15:46 normalization > getdate() as _airbyte_normalized_at 2022-04-19 13:15:46 normalization > from "datalake".zendesk._airbyte_raw_ticket_metric_events as table_alias 2022-04-19 13:15:46 normalization > -- ticket_metric_events 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ), __dbt__cte__ticket_metric_events_ab2 as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > -- SQL model to cast each column to its adequate SQL type converted from the JSON schema type 2022-04-19 13:15:46 normalization > -- depends_on: __dbt__cte__ticket_metric_events_ab1 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > cast(id as 2022-04-19 13:15:46 normalization > bigint 2022-04-19 13:15:46 normalization > ) as id, 2022-04-19 13:15:46 normalization > cast("time" as varchar) as "time", 2022-04-19 13:15:46 normalization > cast(type as varchar) as type, 2022-04-19 13:15:46 normalization > cast(metric as varchar) as metric, 2022-04-19 13:15:46 normalization > cast(ticket_id as 2022-04-19 13:15:46 normalization > bigint 2022-04-19 13:15:46 normalization > ) as ticket_id, 2022-04-19 13:15:46 normalization > cast(instance_id as 2022-04-19 13:15:46 normalization > bigint 2022-04-19 13:15:46 normalization > ) as instance_id, 2022-04-19 13:15:46 normalization > _airbyte_ab_id, 2022-04-19 13:15:46 normalization > _airbyte_emitted_at, 2022-04-19 13:15:46 normalization > getdate() as _airbyte_normalized_at 2022-04-19 13:15:46 normalization > from __dbt__cte__ticket_metric_events_ab1 2022-04-19 13:15:46 normalization > -- ticket_metric_events 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > )-- SQL model to build a hash column based on the values of this record 2022-04-19 13:15:46 normalization > -- depends_on: __dbt__cte__ticket_metric_events_ab2 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > md5(cast(coalesce(cast(id as varchar), '') || '-' || coalesce(cast("time" as varchar), '') || '-' || coalesce(cast(type as varchar), '') || '-' || coalesce(cast(metric as varchar), '') || '-' || coalesce(cast(ticket_id as varchar), '') || '-' || coalesce(cast(instance_id as varchar), '') as varchar)) as _airbyte_ticket_metric_events_hashid, 2022-04-19 13:15:46 normalization > tmp.* 2022-04-19 13:15:46 normalization > from __dbt__cte__ticket_metric_events_ab2 tmp 2022-04-19 13:15:46 normalization > -- ticket_metric_events 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ) ; 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.807395 (Thread-1): Writing injected SQL for node "model.airbyte_utils.ticket_metrics_ab2" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.828545 (Thread-1): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.829210 (Thread-1): Finished running node model.airbyte_utils.ticket_metrics_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.829428 (Thread-1): Began running node model.airbyte_utils.brands_ab3 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.829793 (Thread-1): Acquiring new redshift connection "model.airbyte_utils.brands_ab3". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.829973 (Thread-1): Compiling model.airbyte_utils.brands_ab3 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.807671 (Thread-2): SQL status: CREATE VIEW in 0.01 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.913753 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.914016 (Thread-2): On model.airbyte_utils.ticket_metric_events_stg: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_stg"} */ 2022-04-19 13:15:46 normalization > alter table "datalake"._airbyte_zendesk."ticket_metric_events_stg__dbt_tmp" rename to "ticket_metric_events_stg" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.940223 (Thread-4): Using redshift connection "model.airbyte_utils.tags". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.940509 (Thread-4): On model.airbyte_utils.tags: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.940661 (Thread-4): Opening a new connection, currently in state init 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.940778 (Thread-4): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:07.946690 (Thread-2): SQL status: ALTER TABLE in 0.03 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.001705 (Thread-2): On model.airbyte_utils.ticket_metric_events_stg: COMMIT 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.001971 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.002102 (Thread-2): On model.airbyte_utils.ticket_metric_events_stg: COMMIT 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.029538 (Thread-4): SQL status: BEGIN in 0.09 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.029817 (Thread-4): Using redshift connection "model.airbyte_utils.tags". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.029949 (Thread-4): On model.airbyte_utils.tags: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tags"} */ 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > with bound_views as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > ordinal_position, 2022-04-19 13:15:46 normalization > table_schema, 2022-04-19 13:15:46 normalization > column_name, 2022-04-19 13:15:46 normalization > data_type, 2022-04-19 13:15:46 normalization > character_maximum_length, 2022-04-19 13:15:46 normalization > numeric_precision, 2022-04-19 13:15:46 normalization > numeric_scale 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > from information_schema."columns" 2022-04-19 13:15:46 normalization > where table_name = 'tags' 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > unbound_views as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > ordinal_position, 2022-04-19 13:15:46 normalization > view_schema, 2022-04-19 13:15:46 normalization > col_name, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:46 normalization > 'character varying' 2022-04-19 13:15:46 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:46 normalization > else col_type 2022-04-19 13:15:46 normalization > end as col_type, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type like 'character%' 2022-04-19 13:15:46 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as character_maximum_length, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_precision, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_scale 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:46 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:46 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:46 normalization > where view_name = 'tags' 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > external_views as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > columnnum, 2022-04-19 13:15:46 normalization > schemaname, 2022-04-19 13:15:46 normalization > columnname, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:46 normalization > then 'character varying' 2022-04-19 13:15:46 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:46 normalization > else external_type 2022-04-19 13:15:46 normalization > end as external_type, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as character_maximum_length, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_precision, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_scale 2022-04-19 13:15:46 normalization > from 2022-04-19 13:15:46 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:46 normalization > where 2022-04-19 13:15:46 normalization > schemaname = 'zendesk' 2022-04-19 13:15:46 normalization > and tablename = 'tags' 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > unioned as ( 2022-04-19 13:15:46 normalization > select * from bound_views 2022-04-19 13:15:46 normalization > union all 2022-04-19 13:15:46 normalization > select * from unbound_views 2022-04-19 13:15:46 normalization > union all 2022-04-19 13:15:46 normalization > select * from external_views 2022-04-19 13:15:46 normalization > ) 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > column_name, 2022-04-19 13:15:46 normalization > data_type, 2022-04-19 13:15:46 normalization > character_maximum_length, 2022-04-19 13:15:46 normalization > numeric_precision, 2022-04-19 13:15:46 normalization > numeric_scale 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > from unioned 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > order by ordinal_position 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.053299 (Thread-1): Writing injected SQL for node "model.airbyte_utils.brands_ab3" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.064964 (Thread-1): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.065544 (Thread-1): Finished running node model.airbyte_utils.brands_ab3 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.064497 (Thread-3): Writing injected SQL for node "model.airbyte_utils.tickets_ab2" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.066354 (Thread-3): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.066742 (Thread-3): Finished running node model.airbyte_utils.tickets_ab2 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.066940 (Thread-3): Began running node model.airbyte_utils.sla_policies 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.067444 (Thread-3): 13:15:08 | 4 of 33 START incremental model zendesk.sla_policies......................................................... [RUN] 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.065770 (Thread-1): Began running node model.airbyte_utils.ticket_fields_stg 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.068314 (Thread-1): 13:15:08 | 3 of 33 START view model _airbyte_zendesk.ticket_fields_stg.................................................. [RUN] 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.068680 (Thread-3): Acquiring new redshift connection "model.airbyte_utils.sla_policies". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.068848 (Thread-3): Compiling model.airbyte_utils.sla_policies 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.076373 (Thread-2): SQL status: COMMIT in 0.07 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.076905 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.077048 (Thread-2): On model.airbyte_utils.ticket_metric_events_stg: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.077802 (Thread-1): Acquiring new redshift connection "model.airbyte_utils.ticket_fields_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.077964 (Thread-1): Compiling model.airbyte_utils.ticket_fields_stg 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.089386 (Thread-2): SQL status: BEGIN in 0.01 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.099997 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.100165 (Thread-2): On model.airbyte_utils.ticket_metric_events_stg: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_stg"} */ 2022-04-19 13:15:46 normalization > drop view if exists "datalake"._airbyte_zendesk."ticket_metric_events_stg__dbt_backup" cascade 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.122833 (Thread-3): Using redshift connection "model.airbyte_utils.sla_policies". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.140568 (Thread-3): On model.airbyte_utils.sla_policies: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.140780 (Thread-3): Opening a new connection, currently in state init 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.140910 (Thread-3): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.166189 (Thread-2): SQL status: DROP VIEW in 0.03 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.167370 (Thread-2): On model.airbyte_utils.ticket_metric_events_stg: COMMIT 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.167525 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.167657 (Thread-2): On model.airbyte_utils.ticket_metric_events_stg: COMMIT 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.216779 (Thread-3): SQL status: BEGIN in 0.08 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.217838 (Thread-3): Using redshift connection "model.airbyte_utils.sla_policies". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.218042 (Thread-3): On model.airbyte_utils.sla_policies: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.sla_policies"} */ 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > with bound_views as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > ordinal_position, 2022-04-19 13:15:46 normalization > table_schema, 2022-04-19 13:15:46 normalization > column_name, 2022-04-19 13:15:46 normalization > data_type, 2022-04-19 13:15:46 normalization > character_maximum_length, 2022-04-19 13:15:46 normalization > numeric_precision, 2022-04-19 13:15:46 normalization > numeric_scale 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > from information_schema."columns" 2022-04-19 13:15:46 normalization > where table_name = 'sla_policies' 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > unbound_views as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > ordinal_position, 2022-04-19 13:15:46 normalization > view_schema, 2022-04-19 13:15:46 normalization > col_name, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:46 normalization > 'character varying' 2022-04-19 13:15:46 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:46 normalization > else col_type 2022-04-19 13:15:46 normalization > end as col_type, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type like 'character%' 2022-04-19 13:15:46 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as character_maximum_length, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_precision, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_scale 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:46 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:46 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:46 normalization > where view_name = 'sla_policies' 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > external_views as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > columnnum, 2022-04-19 13:15:46 normalization > schemaname, 2022-04-19 13:15:46 normalization > columnname, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:46 normalization > then 'character varying' 2022-04-19 13:15:46 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:46 normalization > else external_type 2022-04-19 13:15:46 normalization > end as external_type, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as character_maximum_length, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_precision, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_scale 2022-04-19 13:15:46 normalization > from 2022-04-19 13:15:46 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:46 normalization > where 2022-04-19 13:15:46 normalization > schemaname = 'zendesk' 2022-04-19 13:15:46 normalization > and tablename = 'sla_policies' 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > unioned as ( 2022-04-19 13:15:46 normalization > select * from bound_views 2022-04-19 13:15:46 normalization > union all 2022-04-19 13:15:46 normalization > select * from unbound_views 2022-04-19 13:15:46 normalization > union all 2022-04-19 13:15:46 normalization > select * from external_views 2022-04-19 13:15:46 normalization > ) 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > column_name, 2022-04-19 13:15:46 normalization > data_type, 2022-04-19 13:15:46 normalization > character_maximum_length, 2022-04-19 13:15:46 normalization > numeric_precision, 2022-04-19 13:15:46 normalization > numeric_scale 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > from unioned 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > order by ordinal_position 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.244342 (Thread-4): SQL status: SELECT in 0.21 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.254035 (Thread-2): SQL status: COMMIT in 0.09 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.256523 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.256670 (Thread-2): On model.airbyte_utils.ticket_metric_events_stg: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.274273 (Thread-2): SQL status: BEGIN in 0.02 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.275617 (Thread-2): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.276247 (Thread-2): On model.airbyte_utils.ticket_metric_events_stg: ROLLBACK 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.288371 (Thread-2): On model.airbyte_utils.ticket_metric_events_stg: Close 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.289362 (Thread-2): 13:15:08 | 1 of 33 OK created view model _airbyte_zendesk.ticket_metric_events_stg...................................... [CREATE VIEW in 1.07s] 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.296408 (Thread-2): Finished running node model.airbyte_utils.ticket_metric_events_stg 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.296676 (Thread-2): Began running node model.airbyte_utils.ticket_metrics_stg 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.297297 (Thread-2): 13:15:08 | 5 of 33 START view model _airbyte_zendesk.ticket_metrics_stg................................................. [RUN] 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.298179 (Thread-2): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.298364 (Thread-2): Compiling model.airbyte_utils.ticket_metrics_stg 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.472523 (Thread-4): Writing injected SQL for node "model.airbyte_utils.tags" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.497398 (Thread-3): SQL status: SELECT in 0.28 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.498030 (Thread-4): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.570720 (Thread-3): Writing injected SQL for node "model.airbyte_utils.sla_policies" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.633933 (Thread-3): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.678368 (Thread-1): Writing injected SQL for node "model.airbyte_utils.ticket_fields_stg" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.764065 (Thread-1): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.774774 (Thread-1): Writing runtime SQL for node "model.airbyte_utils.ticket_fields_stg" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.831934 (Thread-1): Using redshift connection "model.airbyte_utils.ticket_fields_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.832156 (Thread-1): On model.airbyte_utils.ticket_fields_stg: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.832331 (Thread-1): Opening a new connection, currently in state closed 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.832455 (Thread-1): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.904486 (Thread-4): Using redshift connection "model.airbyte_utils.tags". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.912733 (Thread-1): SQL status: BEGIN in 0.08 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.921854 (Thread-1): Using redshift connection "model.airbyte_utils.ticket_fields_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.921975 (Thread-1): On model.airbyte_utils.ticket_fields_stg: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_stg"} */ 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > create view "datalake"._airbyte_zendesk."ticket_fields_stg__dbt_tmp" as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > with __dbt__cte__ticket_fields_ab1 as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > -- SQL model to parse JSON blob stored in a single column and extract into separated field columns as described by the JSON Schema 2022-04-19 13:15:46 normalization > -- depends_on: "datalake".zendesk._airbyte_raw_ticket_fields 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'id', true) != '' then json_extract_path_text(_airbyte_data, 'id', true) end as id, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'tag', true) != '' then json_extract_path_text(_airbyte_data, 'tag', true) end as "tag", 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'url', true) != '' then json_extract_path_text(_airbyte_data, 'url', true) end as url, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'type', true) != '' then json_extract_path_text(_airbyte_data, 'type', true) end as type, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'title', true) != '' then json_extract_path_text(_airbyte_data, 'title', true) end as title, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'active', true) != '' then json_extract_path_text(_airbyte_data, 'active', true) end as active, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'position', true) != '' then json_extract_path_text(_airbyte_data, 'position', true) end as position, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'required', true) != '' then json_extract_path_text(_airbyte_data, 'required', true) end as required, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'raw_title', true) != '' then json_extract_path_text(_airbyte_data, 'raw_title', true) end as raw_title, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'removable', true) != '' then json_extract_path_text(_airbyte_data, 'removable', true) end as removable, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'created_at', true) != '' then json_extract_path_text(_airbyte_data, 'created_at', true) end as created_at, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'updated_at', true) != '' then json_extract_path_text(_airbyte_data, 'updated_at', true) end as updated_at, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'description', true) != '' then json_extract_path_text(_airbyte_data, 'description', true) end as description, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'sub_type_id', true) != '' then json_extract_path_text(_airbyte_data, 'sub_type_id', true) end as sub_type_id, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'raw_description', true) != '' then json_extract_path_text(_airbyte_data, 'raw_description', true) end as raw_description, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'title_in_portal', true) != '' then json_extract_path_text(_airbyte_data, 'title_in_portal', true) end as title_in_portal, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'agent_description', true) != '' then json_extract_path_text(_airbyte_data, 'agent_description', true) end as agent_description, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'visible_in_portal', true) != '' then json_extract_path_text(_airbyte_data, 'visible_in_portal', true) end as visible_in_portal, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'editable_in_portal', true) != '' then json_extract_path_text(_airbyte_data, 'editable_in_portal', true) end as editable_in_portal, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'required_in_portal', true) != '' then json_extract_path_text(_airbyte_data, 'required_in_portal', true) end as required_in_portal, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'raw_title_in_portal', true) != '' then json_extract_path_text(_airbyte_data, 'raw_title_in_portal', true) end as raw_title_in_portal, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'collapsed_for_agents', true) != '' then json_extract_path_text(_airbyte_data, 'collapsed_for_agents', true) end as collapsed_for_agents, 2022-04-19 13:15:46 normalization > json_extract_path_text(_airbyte_data, 'custom_field_options', true) as custom_field_options, 2022-04-19 13:15:46 normalization > json_extract_path_text(_airbyte_data, 'system_field_options', true) as system_field_options, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'regexp_for_validation', true) != '' then json_extract_path_text(_airbyte_data, 'regexp_for_validation', true) end as regexp_for_validation, 2022-04-19 13:15:46 normalization > _airbyte_ab_id, 2022-04-19 13:15:46 normalization > _airbyte_emitted_at, 2022-04-19 13:15:46 normalization > getdate() as _airbyte_normalized_at 2022-04-19 13:15:46 normalization > from "datalake".zendesk._airbyte_raw_ticket_fields as table_alias 2022-04-19 13:15:46 normalization > -- ticket_fields 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ), __dbt__cte__ticket_fields_ab2 as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > -- SQL model to cast each column to its adequate SQL type converted from the JSON schema type 2022-04-19 13:15:46 normalization > -- depends_on: __dbt__cte__ticket_fields_ab1 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > cast(id as 2022-04-19 13:15:46 normalization > bigint 2022-04-19 13:15:46 normalization > ) as id, 2022-04-19 13:15:46 normalization > cast("tag" as varchar) as "tag", 2022-04-19 13:15:46 normalization > cast(url as varchar) as url, 2022-04-19 13:15:46 normalization > cast(type as varchar) as type, 2022-04-19 13:15:46 normalization > cast(title as varchar) as title, 2022-04-19 13:15:46 normalization > cast(decode(active, 'true', '1', 'false', '0')::integer as boolean) as active, 2022-04-19 13:15:46 normalization > cast(position as 2022-04-19 13:15:46 normalization > bigint 2022-04-19 13:15:46 normalization > ) as position, 2022-04-19 13:15:46 normalization > cast(decode(required, 'true', '1', 'false', '0')::integer as boolean) as required, 2022-04-19 13:15:46 normalization > cast(raw_title as varchar) as raw_title, 2022-04-19 13:15:46 normalization > cast(decode(removable, 'true', '1', 'false', '0')::integer as boolean) as removable, 2022-04-19 13:15:46 normalization > cast(nullif(created_at, '') as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > ) as created_at, 2022-04-19 13:15:46 normalization > cast(nullif(updated_at, '') as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > ) as updated_at, 2022-04-19 13:15:46 normalization > cast(description as varchar) as description, 2022-04-19 13:15:46 normalization > cast(sub_type_id as 2022-04-19 13:15:46 normalization > bigint 2022-04-19 13:15:46 normalization > ) as sub_type_id, 2022-04-19 13:15:46 normalization > cast(raw_description as varchar) as raw_description, 2022-04-19 13:15:46 normalization > cast(title_in_portal as varchar) as title_in_portal, 2022-04-19 13:15:46 normalization > cast(agent_description as varchar) as agent_description, 2022-04-19 13:15:46 normalization > cast(decode(visible_in_portal, 'true', '1', 'false', '0')::integer as boolean) as visible_in_portal, 2022-04-19 13:15:46 normalization > cast(decode(editable_in_portal, 'true', '1', 'false', '0')::integer as boolean) as editable_in_portal, 2022-04-19 13:15:46 normalization > cast(decode(required_in_portal, 'true', '1', 'false', '0')::integer as boolean) as required_in_portal, 2022-04-19 13:15:46 normalization > cast(raw_title_in_portal as varchar) as raw_title_in_portal, 2022-04-19 13:15:46 normalization > cast(decode(collapsed_for_agents, 'true', '1', 'false', '0')::integer as boolean) as collapsed_for_agents, 2022-04-19 13:15:46 normalization > custom_field_options, 2022-04-19 13:15:46 normalization > system_field_options, 2022-04-19 13:15:46 normalization > cast(regexp_for_validation as varchar) as regexp_for_validation, 2022-04-19 13:15:46 normalization > _airbyte_ab_id, 2022-04-19 13:15:46 normalization > _airbyte_emitted_at, 2022-04-19 13:15:46 normalization > getdate() as _airbyte_normalized_at 2022-04-19 13:15:46 normalization > from __dbt__cte__ticket_fields_ab1 2022-04-19 13:15:46 normalization > -- ticket_fields 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > )-- SQL model to build a hash column based on the values of this record 2022-04-19 13:15:46 normalization > -- depends_on: __dbt__cte__ticket_fields_ab2 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > md5(cast(coalesce(cast(id as varchar), '') || '-' || coalesce(cast("tag" as varchar), '') || '-' || coalesce(cast(url as varchar), '') || '-' || coalesce(cast(type as varchar), '') || '-' || coalesce(cast(title as varchar), '') || '-' || coalesce(cast(case when active then 'true' else 'false' end as varchar), '') || '-' || coalesce(cast(position as varchar), '') || '-' || coalesce(cast(case when required then 'true' else 'false' end as varchar), '') || '-' || coalesce(cast(raw_title as varchar), '') || '-' || coalesce(cast(case when removable then 'true' else 'false' end as varchar), '') || '-' || coalesce(cast(created_at as varchar), '') || '-' || coalesce(cast(updated_at as varchar), '') || '-' || coalesce(cast(description as varchar), '') || '-' || coalesce(cast(sub_type_id as varchar), '') || '-' || coalesce(cast(raw_description as varchar), '') || '-' || coalesce(cast(title_in_portal as varchar), '') || '-' || coalesce(cast(agent_description as varchar), '') || '-' || coalesce(cast(case when visible_in_portal then 'true' else 'false' end as varchar), '') || '-' || coalesce(cast(case when editable_in_portal then 'true' else 'false' end as varchar), '') || '-' || coalesce(cast(case when required_in_portal then 'true' else 'false' end as varchar), '') || '-' || coalesce(cast(raw_title_in_portal as varchar), '') || '-' || coalesce(cast(case when collapsed_for_agents then 'true' else 'false' end as varchar), '') || '-' || coalesce(cast(custom_field_options as varchar), '') || '-' || coalesce(cast(system_field_options as varchar), '') || '-' || coalesce(cast(regexp_for_validation as varchar), '') as varchar)) as _airbyte_ticket_fields_hashid, 2022-04-19 13:15:46 normalization > tmp.* 2022-04-19 13:15:46 normalization > from __dbt__cte__ticket_fields_ab2 tmp 2022-04-19 13:15:46 normalization > -- ticket_fields 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ) ; 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.921691 (Thread-4): On model.airbyte_utils.tags: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tags"} */ 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > with bound_views as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > ordinal_position, 2022-04-19 13:15:46 normalization > table_schema, 2022-04-19 13:15:46 normalization > column_name, 2022-04-19 13:15:46 normalization > data_type, 2022-04-19 13:15:46 normalization > character_maximum_length, 2022-04-19 13:15:46 normalization > numeric_precision, 2022-04-19 13:15:46 normalization > numeric_scale 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > from information_schema."columns" 2022-04-19 13:15:46 normalization > where table_name = 'tags' 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > unbound_views as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > ordinal_position, 2022-04-19 13:15:46 normalization > view_schema, 2022-04-19 13:15:46 normalization > col_name, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:46 normalization > 'character varying' 2022-04-19 13:15:46 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:46 normalization > else col_type 2022-04-19 13:15:46 normalization > end as col_type, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type like 'character%' 2022-04-19 13:15:46 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as character_maximum_length, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_precision, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_scale 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:46 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:46 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:46 normalization > where view_name = 'tags' 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > external_views as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > columnnum, 2022-04-19 13:15:46 normalization > schemaname, 2022-04-19 13:15:46 normalization > columnname, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:46 normalization > then 'character varying' 2022-04-19 13:15:46 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:46 normalization > else external_type 2022-04-19 13:15:46 normalization > end as external_type, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as character_maximum_length, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_precision, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_scale 2022-04-19 13:15:46 normalization > from 2022-04-19 13:15:46 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:46 normalization > where 2022-04-19 13:15:46 normalization > schemaname = 'zendesk' 2022-04-19 13:15:46 normalization > and tablename = 'tags' 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > unioned as ( 2022-04-19 13:15:46 normalization > select * from bound_views 2022-04-19 13:15:46 normalization > union all 2022-04-19 13:15:46 normalization > select * from unbound_views 2022-04-19 13:15:46 normalization > union all 2022-04-19 13:15:46 normalization > select * from external_views 2022-04-19 13:15:46 normalization > ) 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > column_name, 2022-04-19 13:15:46 normalization > data_type, 2022-04-19 13:15:46 normalization > character_maximum_length, 2022-04-19 13:15:46 normalization > numeric_precision, 2022-04-19 13:15:46 normalization > numeric_scale 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > from unioned 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > order by ordinal_position 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.921478 (Thread-3): Using redshift connection "model.airbyte_utils.sla_policies". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.922341 (Thread-3): On model.airbyte_utils.sla_policies: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.sla_policies"} */ 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > with bound_views as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > ordinal_position, 2022-04-19 13:15:46 normalization > table_schema, 2022-04-19 13:15:46 normalization > column_name, 2022-04-19 13:15:46 normalization > data_type, 2022-04-19 13:15:46 normalization > character_maximum_length, 2022-04-19 13:15:46 normalization > numeric_precision, 2022-04-19 13:15:46 normalization > numeric_scale 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > from information_schema."columns" 2022-04-19 13:15:46 normalization > where table_name = 'sla_policies' 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > unbound_views as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > ordinal_position, 2022-04-19 13:15:46 normalization > view_schema, 2022-04-19 13:15:46 normalization > col_name, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:46 normalization > 'character varying' 2022-04-19 13:15:46 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:46 normalization > else col_type 2022-04-19 13:15:46 normalization > end as col_type, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type like 'character%' 2022-04-19 13:15:46 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as character_maximum_length, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_precision, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_scale 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:46 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:46 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:46 normalization > where view_name = 'sla_policies' 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > external_views as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > columnnum, 2022-04-19 13:15:46 normalization > schemaname, 2022-04-19 13:15:46 normalization > columnname, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:46 normalization > then 'character varying' 2022-04-19 13:15:46 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:46 normalization > else external_type 2022-04-19 13:15:46 normalization > end as external_type, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as character_maximum_length, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_precision, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_scale 2022-04-19 13:15:46 normalization > from 2022-04-19 13:15:46 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:46 normalization > where 2022-04-19 13:15:46 normalization > schemaname = 'zendesk' 2022-04-19 13:15:46 normalization > and tablename = 'sla_policies' 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > unioned as ( 2022-04-19 13:15:46 normalization > select * from bound_views 2022-04-19 13:15:46 normalization > union all 2022-04-19 13:15:46 normalization > select * from unbound_views 2022-04-19 13:15:46 normalization > union all 2022-04-19 13:15:46 normalization > select * from external_views 2022-04-19 13:15:46 normalization > ) 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > column_name, 2022-04-19 13:15:46 normalization > data_type, 2022-04-19 13:15:46 normalization > character_maximum_length, 2022-04-19 13:15:46 normalization > numeric_precision, 2022-04-19 13:15:46 normalization > numeric_scale 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > from unioned 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > order by ordinal_position 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.947848 (Thread-2): Writing injected SQL for node "model.airbyte_utils.ticket_metrics_stg" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.948303 (Thread-2): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.958591 (Thread-2): Writing runtime SQL for node "model.airbyte_utils.ticket_metrics_stg" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.959031 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metrics_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.959208 (Thread-2): On model.airbyte_utils.ticket_metrics_stg: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.959403 (Thread-2): Opening a new connection, currently in state closed 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.959524 (Thread-2): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.973837 (Thread-1): SQL status: CREATE VIEW in 0.05 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.977864 (Thread-1): Using redshift connection "model.airbyte_utils.ticket_fields_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.978033 (Thread-1): On model.airbyte_utils.ticket_fields_stg: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_stg"} */ 2022-04-19 13:15:46 normalization > alter table "datalake"._airbyte_zendesk."ticket_fields_stg__dbt_tmp" rename to "ticket_fields_stg" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.987936 (Thread-1): SQL status: ALTER TABLE in 0.01 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.989818 (Thread-1): On model.airbyte_utils.ticket_fields_stg: COMMIT 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.989981 (Thread-1): Using redshift connection "model.airbyte_utils.ticket_fields_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:08.990119 (Thread-1): On model.airbyte_utils.ticket_fields_stg: COMMIT 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.019571 (Thread-2): SQL status: BEGIN in 0.06 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.019876 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metrics_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.020026 (Thread-2): On model.airbyte_utils.ticket_metrics_stg: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metrics_stg"} */ 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > create view "datalake"._airbyte_zendesk."ticket_metrics_stg__dbt_tmp" as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > with __dbt__cte__ticket_metrics_ab1 as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > -- SQL model to parse JSON blob stored in a single column and extract into separated field columns as described by the JSON Schema 2022-04-19 13:15:46 normalization > -- depends_on: "datalake".zendesk._airbyte_raw_ticket_metrics 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'id', true) != '' then json_extract_path_text(_airbyte_data, 'id', true) end as id, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'url', true) != '' then json_extract_path_text(_airbyte_data, 'url', true) end as url, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'time', true) != '' then json_extract_path_text(_airbyte_data, 'time', true) end as "time", 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'type', true) != '' then json_extract_path_text(_airbyte_data, 'type', true) end as type, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'metric', true) != '' then json_extract_path_text(_airbyte_data, 'metric', true) end as metric, 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > case when json_extract_path_text(table_alias._airbyte_data, 'status', true) != '' then json_extract_path_text(table_alias._airbyte_data, 'status', true) end 2022-04-19 13:15:46 normalization > as status, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'reopens', true) != '' then json_extract_path_text(_airbyte_data, 'reopens', true) end as reopens, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'replies', true) != '' then json_extract_path_text(_airbyte_data, 'replies', true) end as replies, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'solved_at', true) != '' then json_extract_path_text(_airbyte_data, 'solved_at', true) end as solved_at, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'ticket_id', true) != '' then json_extract_path_text(_airbyte_data, 'ticket_id', true) end as ticket_id, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'created_at', true) != '' then json_extract_path_text(_airbyte_data, 'created_at', true) end as created_at, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'updated_at', true) != '' then json_extract_path_text(_airbyte_data, 'updated_at', true) end as updated_at, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'assigned_at', true) != '' then json_extract_path_text(_airbyte_data, 'assigned_at', true) end as assigned_at, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'instance_id', true) != '' then json_extract_path_text(_airbyte_data, 'instance_id', true) end as instance_id, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'group_stations', true) != '' then json_extract_path_text(_airbyte_data, 'group_stations', true) end as group_stations, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'assignee_stations', true) != '' then json_extract_path_text(_airbyte_data, 'assignee_stations', true) end as assignee_stations, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'status_updated_at', true) != '' then json_extract_path_text(_airbyte_data, 'status_updated_at', true) end as status_updated_at, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'assignee_updated_at', true) != '' then json_extract_path_text(_airbyte_data, 'assignee_updated_at', true) end as assignee_updated_at, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'requester_updated_at', true) != '' then json_extract_path_text(_airbyte_data, 'requester_updated_at', true) end as requester_updated_at, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'initially_assigned_at', true) != '' then json_extract_path_text(_airbyte_data, 'initially_assigned_at', true) end as initially_assigned_at, 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > case when json_extract_path_text(table_alias._airbyte_data, 'reply_time_in_minutes', true) != '' then json_extract_path_text(table_alias._airbyte_data, 'reply_time_in_minutes', true) end 2022-04-19 13:15:46 normalization > as reply_time_in_minutes, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'latest_comment_added_at', true) != '' then json_extract_path_text(_airbyte_data, 'latest_comment_added_at', true) end as latest_comment_added_at, 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > case when json_extract_path_text(table_alias._airbyte_data, 'on_hold_time_in_minutes', true) != '' then json_extract_path_text(table_alias._airbyte_data, 'on_hold_time_in_minutes', true) end 2022-04-19 13:15:46 normalization > as on_hold_time_in_minutes, 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > case when json_extract_path_text(table_alias._airbyte_data, 'agent_wait_time_in_minutes', true) != '' then json_extract_path_text(table_alias._airbyte_data, 'agent_wait_time_in_minutes', true) end 2022-04-19 13:15:46 normalization > as agent_wait_time_in_minutes, 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > case when json_extract_path_text(table_alias._airbyte_data, 'requester_wait_time_in_minutes', true) != '' then json_extract_path_text(table_alias._airbyte_data, 'requester_wait_time_in_minutes', true) end 2022-04-19 13:15:46 normalization > as requester_wait_time_in_minutes, 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > case when json_extract_path_text(table_alias._airbyte_data, 'full_resolution_time_in_minutes', true) != '' then json_extract_path_text(table_alias._airbyte_data, 'full_resolution_time_in_minutes', true) end 2022-04-19 13:15:46 normalization > as full_resolution_time_in_minutes, 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > case when json_extract_path_text(table_alias._airbyte_data, 'first_resolution_time_in_minutes', true) != '' then json_extract_path_text(table_alias._airbyte_data, 'first_resolution_time_in_minutes', true) end 2022-04-19 13:15:46 normalization > as first_resolution_time_in_minutes, 2022-04-19 13:15:46 normalization > _airbyte_ab_id, 2022-04-19 13:15:46 normalization > _airbyte_emitted_at, 2022-04-19 13:15:46 normalization > getdate() as _airbyte_normalized_at 2022-04-19 13:15:46 normalization > from "datalake".zendesk._airbyte_raw_ticket_metrics as table_alias 2022-04-19 13:15:46 normalization > -- ticket_metrics 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ), __dbt__cte__ticket_metrics_ab2 as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > -- SQL model to cast each column to its adequate SQL type converted from the JSON schema type 2022-04-19 13:15:46 normalization > -- depends_on: __dbt__cte__ticket_metrics_ab1 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > cast(id as 2022-04-19 13:15:46 normalization > bigint 2022-04-19 13:15:46 normalization > ) as id, 2022-04-19 13:15:46 normalization > cast(url as varchar) as url, 2022-04-19 13:15:46 normalization > cast("time" as varchar) as "time", 2022-04-19 13:15:46 normalization > cast(type as varchar) as type, 2022-04-19 13:15:46 normalization > cast(metric as varchar) as metric, 2022-04-19 13:15:46 normalization > cast(status as varchar) as status, 2022-04-19 13:15:46 normalization > cast(reopens as 2022-04-19 13:15:46 normalization > bigint 2022-04-19 13:15:46 normalization > ) as reopens, 2022-04-19 13:15:46 normalization > cast(replies as 2022-04-19 13:15:46 normalization > bigint 2022-04-19 13:15:46 normalization > ) as replies, 2022-04-19 13:15:46 normalization > cast(nullif(solved_at, '') as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > ) as solved_at, 2022-04-19 13:15:46 normalization > cast(ticket_id as 2022-04-19 13:15:46 normalization > bigint 2022-04-19 13:15:46 normalization > ) as ticket_id, 2022-04-19 13:15:46 normalization > cast(nullif(created_at, '') as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > ) as created_at, 2022-04-19 13:15:46 normalization > cast(nullif(updated_at, '') as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > ) as updated_at, 2022-04-19 13:15:46 normalization > cast(nullif(assigned_at, '') as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > ) as assigned_at, 2022-04-19 13:15:46 normalization > cast(instance_id as 2022-04-19 13:15:46 normalization > bigint 2022-04-19 13:15:46 normalization > ) as instance_id, 2022-04-19 13:15:46 normalization > cast(group_stations as 2022-04-19 13:15:46 normalization > bigint 2022-04-19 13:15:46 normalization > ) as group_stations, 2022-04-19 13:15:46 normalization > cast(assignee_stations as 2022-04-19 13:15:46 normalization > bigint 2022-04-19 13:15:46 normalization > ) as assignee_stations, 2022-04-19 13:15:46 normalization > cast(nullif(status_updated_at, '') as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > ) as status_updated_at, 2022-04-19 13:15:46 normalization > cast(nullif(assignee_updated_at, '') as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > ) as assignee_updated_at, 2022-04-19 13:15:46 normalization > cast(nullif(requester_updated_at, '') as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > ) as requester_updated_at, 2022-04-19 13:15:46 normalization > cast(nullif(initially_assigned_at, '') as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > ) as initially_assigned_at, 2022-04-19 13:15:46 normalization > cast(reply_time_in_minutes as varchar) as reply_time_in_minutes, 2022-04-19 13:15:46 normalization > cast(nullif(latest_comment_added_at, '') as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > ) as latest_comment_added_at, 2022-04-19 13:15:46 normalization > cast(on_hold_time_in_minutes as varchar) as on_hold_time_in_minutes, 2022-04-19 13:15:46 normalization > cast(agent_wait_time_in_minutes as varchar) as agent_wait_time_in_minutes, 2022-04-19 13:15:46 normalization > cast(requester_wait_time_in_minutes as varchar) as requester_wait_time_in_minutes, 2022-04-19 13:15:46 normalization > cast(full_resolution_time_in_minutes as varchar) as full_resolution_time_in_minutes, 2022-04-19 13:15:46 normalization > cast(first_resolution_time_in_minutes as varchar) as first_resolution_time_in_minutes, 2022-04-19 13:15:46 normalization > _airbyte_ab_id, 2022-04-19 13:15:46 normalization > _airbyte_emitted_at, 2022-04-19 13:15:46 normalization > getdate() as _airbyte_normalized_at 2022-04-19 13:15:46 normalization > from __dbt__cte__ticket_metrics_ab1 2022-04-19 13:15:46 normalization > -- ticket_metrics 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > )-- SQL model to build a hash column based on the values of this record 2022-04-19 13:15:46 normalization > -- depends_on: __dbt__cte__ticket_metrics_ab2 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > md5(cast(coalesce(cast(id as varchar), '') || '-' || coalesce(cast(url as varchar), '') || '-' || coalesce(cast("time" as varchar), '') || '-' || coalesce(cast(type as varchar), '') || '-' || coalesce(cast(metric as varchar), '') || '-' || coalesce(cast(status as varchar), '') || '-' || coalesce(cast(reopens as varchar), '') || '-' || coalesce(cast(replies as varchar), '') || '-' || coalesce(cast(solved_at as varchar), '') || '-' || coalesce(cast(ticket_id as varchar), '') || '-' || coalesce(cast(created_at as varchar), '') || '-' || coalesce(cast(updated_at as varchar), '') || '-' || coalesce(cast(assigned_at as varchar), '') || '-' || coalesce(cast(instance_id as varchar), '') || '-' || coalesce(cast(group_stations as varchar), '') || '-' || coalesce(cast(assignee_stations as varchar), '') || '-' || coalesce(cast(status_updated_at as varchar), '') || '-' || coalesce(cast(assignee_updated_at as varchar), '') || '-' || coalesce(cast(requester_updated_at as varchar), '') || '-' || coalesce(cast(initially_assigned_at as varchar), '') || '-' || coalesce(cast(reply_time_in_minutes as varchar), '') || '-' || coalesce(cast(latest_comment_added_at as varchar), '') || '-' || coalesce(cast(on_hold_time_in_minutes as varchar), '') || '-' || coalesce(cast(agent_wait_time_in_minutes as varchar), '') || '-' || coalesce(cast(requester_wait_time_in_minutes as varchar), '') || '-' || coalesce(cast(full_resolution_time_in_minutes as varchar), '') || '-' || coalesce(cast(first_resolution_time_in_minutes as varchar), '') as varchar)) as _airbyte_ticket_metrics_hashid, 2022-04-19 13:15:46 normalization > tmp.* 2022-04-19 13:15:46 normalization > from __dbt__cte__ticket_metrics_ab2 tmp 2022-04-19 13:15:46 normalization > -- ticket_metrics 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ) ; 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.082140 (Thread-1): SQL status: COMMIT in 0.09 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.082720 (Thread-1): Using redshift connection "model.airbyte_utils.ticket_fields_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.082865 (Thread-1): On model.airbyte_utils.ticket_fields_stg: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.086999 (Thread-1): SQL status: BEGIN in 0.00 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.089972 (Thread-1): Using redshift connection "model.airbyte_utils.ticket_fields_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.090129 (Thread-1): On model.airbyte_utils.ticket_fields_stg: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_stg"} */ 2022-04-19 13:15:46 normalization > drop view if exists "datalake"._airbyte_zendesk."ticket_fields_stg__dbt_backup" cascade 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.094191 (Thread-1): SQL status: DROP VIEW in 0.00 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.095222 (Thread-1): On model.airbyte_utils.ticket_fields_stg: COMMIT 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.095509 (Thread-1): Using redshift connection "model.airbyte_utils.ticket_fields_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.095691 (Thread-1): On model.airbyte_utils.ticket_fields_stg: COMMIT 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.117438 (Thread-2): SQL status: CREATE VIEW in 0.10 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.121317 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metrics_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.121481 (Thread-2): On model.airbyte_utils.ticket_metrics_stg: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metrics_stg"} */ 2022-04-19 13:15:46 normalization > alter table "datalake"._airbyte_zendesk."ticket_metrics_stg__dbt_tmp" rename to "ticket_metrics_stg" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.130366 (Thread-2): SQL status: ALTER TABLE in 0.01 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.131752 (Thread-2): On model.airbyte_utils.ticket_metrics_stg: COMMIT 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.131912 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metrics_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.132034 (Thread-2): On model.airbyte_utils.ticket_metrics_stg: COMMIT 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.227167 (Thread-4): SQL status: SELECT in 0.30 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.268408 (Thread-1): SQL status: COMMIT in 0.17 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.268744 (Thread-1): Using redshift connection "model.airbyte_utils.ticket_fields_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.268887 (Thread-1): On model.airbyte_utils.ticket_fields_stg: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.269129 (Thread-3): SQL status: SELECT in 0.35 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.284421 (Thread-2): SQL status: COMMIT in 0.15 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.284867 (Thread-1): SQL status: BEGIN in 0.02 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.285466 (Thread-1): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.285668 (Thread-1): On model.airbyte_utils.ticket_fields_stg: ROLLBACK 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.285878 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metrics_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.286016 (Thread-2): On model.airbyte_utils.ticket_metrics_stg: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.307784 (Thread-2): SQL status: BEGIN in 0.02 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.311048 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metrics_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.311206 (Thread-2): On model.airbyte_utils.ticket_metrics_stg: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metrics_stg"} */ 2022-04-19 13:15:46 normalization > drop view if exists "datalake"._airbyte_zendesk."ticket_metrics_stg__dbt_backup" cascade 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.320481 (Thread-1): On model.airbyte_utils.ticket_fields_stg: Close 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.337481 (Thread-1): 13:15:09 | 3 of 33 OK created view model _airbyte_zendesk.ticket_fields_stg............................................. [CREATE VIEW in 1.26s] 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.338368 (Thread-1): Finished running node model.airbyte_utils.ticket_fields_stg 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.338596 (Thread-1): Began running node model.airbyte_utils.brands 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.338855 (Thread-1): 13:15:09 | 6 of 33 START incremental model zendesk.brands............................................................... [RUN] 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.339810 (Thread-1): Acquiring new redshift connection "model.airbyte_utils.brands". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.339990 (Thread-1): Compiling model.airbyte_utils.brands 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.352370 (Thread-2): SQL status: DROP VIEW in 0.02 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.353406 (Thread-2): On model.airbyte_utils.ticket_metrics_stg: COMMIT 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.353556 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metrics_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.353680 (Thread-2): On model.airbyte_utils.ticket_metrics_stg: COMMIT 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.369835 (Thread-4): Using redshift connection "model.airbyte_utils.tags". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.370454 (Thread-3): Using redshift connection "model.airbyte_utils.sla_policies". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.385928 (Thread-3): On model.airbyte_utils.sla_policies: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.sla_policies"} */ 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > create temporary table 2022-04-19 13:15:46 normalization > "sla_policies__dbt_tmp131508914710" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > compound sortkey(_airbyte_emitted_at) 2022-04-19 13:15:46 normalization > as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > with __dbt__cte__sla_policies_ab1 as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > -- SQL model to parse JSON blob stored in a single column and extract into separated field columns as described by the JSON Schema 2022-04-19 13:15:46 normalization > -- depends_on: "datalake".zendesk._airbyte_raw_sla_policies 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'id', true) != '' then json_extract_path_text(_airbyte_data, 'id', true) end as id, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'url', true) != '' then json_extract_path_text(_airbyte_data, 'url', true) end as url, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'title', true) != '' then json_extract_path_text(_airbyte_data, 'title', true) end as title, 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > case when json_extract_path_text(table_alias._airbyte_data, 'filter', true) != '' then json_extract_path_text(table_alias._airbyte_data, 'filter', true) end 2022-04-19 13:15:46 normalization > as filter, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'position', true) != '' then json_extract_path_text(_airbyte_data, 'position', true) end as position, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'created_at', true) != '' then json_extract_path_text(_airbyte_data, 'created_at', true) end as created_at, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'updated_at', true) != '' then json_extract_path_text(_airbyte_data, 'updated_at', true) end as updated_at, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'description', true) != '' then json_extract_path_text(_airbyte_data, 'description', true) end as description, 2022-04-19 13:15:46 normalization > json_extract_path_text(_airbyte_data, 'policy_metrics', true) as policy_metrics, 2022-04-19 13:15:46 normalization > _airbyte_ab_id, 2022-04-19 13:15:46 normalization > _airbyte_emitted_at, 2022-04-19 13:15:46 normalization > getdate() as _airbyte_normalized_at 2022-04-19 13:15:46 normalization > from "datalake".zendesk._airbyte_raw_sla_policies as table_alias 2022-04-19 13:15:46 normalization > -- sla_policies 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ), __dbt__cte__sla_policies_ab2 as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > -- SQL model to cast each column to its adequate SQL type converted from the JSON schema type 2022-04-19 13:15:46 normalization > -- depends_on: __dbt__cte__sla_policies_ab1 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > cast(id as 2022-04-19 13:15:46 normalization > bigint 2022-04-19 13:15:46 normalization > ) as id, 2022-04-19 13:15:46 normalization > cast(url as varchar) as url, 2022-04-19 13:15:46 normalization > cast(title as varchar) as title, 2022-04-19 13:15:46 normalization > cast(filter as varchar) as filter, 2022-04-19 13:15:46 normalization > cast(position as 2022-04-19 13:15:46 normalization > bigint 2022-04-19 13:15:46 normalization > ) as position, 2022-04-19 13:15:46 normalization > cast(nullif(created_at, '') as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > ) as created_at, 2022-04-19 13:15:46 normalization > cast(nullif(updated_at, '') as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > ) as updated_at, 2022-04-19 13:15:46 normalization > cast(description as varchar) as description, 2022-04-19 13:15:46 normalization > policy_metrics, 2022-04-19 13:15:46 normalization > _airbyte_ab_id, 2022-04-19 13:15:46 normalization > _airbyte_emitted_at, 2022-04-19 13:15:46 normalization > getdate() as _airbyte_normalized_at 2022-04-19 13:15:46 normalization > from __dbt__cte__sla_policies_ab1 2022-04-19 13:15:46 normalization > -- sla_policies 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ), __dbt__cte__sla_policies_ab3 as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > -- SQL model to build a hash column based on the values of this record 2022-04-19 13:15:46 normalization > -- depends_on: __dbt__cte__sla_policies_ab2 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > md5(cast(coalesce(cast(id as varchar), '') || '-' || coalesce(cast(url as varchar), '') || '-' || coalesce(cast(title as varchar), '') || '-' || coalesce(cast(filter as varchar), '') || '-' || coalesce(cast(position as varchar), '') || '-' || coalesce(cast(created_at as varchar), '') || '-' || coalesce(cast(updated_at as varchar), '') || '-' || coalesce(cast(description as varchar), '') || '-' || coalesce(cast(policy_metrics as varchar), '') as varchar)) as _airbyte_sla_policies_hashid, 2022-04-19 13:15:46 normalization > tmp.* 2022-04-19 13:15:46 normalization > from __dbt__cte__sla_policies_ab2 tmp 2022-04-19 13:15:46 normalization > -- sla_policies 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > )-- Final base SQL model 2022-04-19 13:15:46 normalization > -- depends_on: __dbt__cte__sla_policies_ab3 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > id, 2022-04-19 13:15:46 normalization > url, 2022-04-19 13:15:46 normalization > title, 2022-04-19 13:15:46 normalization > filter, 2022-04-19 13:15:46 normalization > position, 2022-04-19 13:15:46 normalization > created_at, 2022-04-19 13:15:46 normalization > updated_at, 2022-04-19 13:15:46 normalization > description, 2022-04-19 13:15:46 normalization > policy_metrics, 2022-04-19 13:15:46 normalization > _airbyte_ab_id, 2022-04-19 13:15:46 normalization > _airbyte_emitted_at, 2022-04-19 13:15:46 normalization > getdate() as _airbyte_normalized_at, 2022-04-19 13:15:46 normalization > _airbyte_sla_policies_hashid 2022-04-19 13:15:46 normalization > from __dbt__cte__sla_policies_ab3 2022-04-19 13:15:46 normalization > -- sla_policies from "datalake".zendesk._airbyte_raw_sla_policies 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > and coalesce( 2022-04-19 13:15:46 normalization > cast(_airbyte_emitted_at as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > ) >= (select max(cast(_airbyte_emitted_at as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > )) from "datalake".zendesk."sla_policies"), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > true) 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ); 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.385771 (Thread-4): On model.airbyte_utils.tags: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tags"} */ 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > create temporary table 2022-04-19 13:15:46 normalization > "tags__dbt_tmp131508900954" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > compound sortkey(_airbyte_emitted_at) 2022-04-19 13:15:46 normalization > as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > with __dbt__cte__tags_ab1 as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > -- SQL model to parse JSON blob stored in a single column and extract into separated field columns as described by the JSON Schema 2022-04-19 13:15:46 normalization > -- depends_on: "datalake".zendesk._airbyte_raw_tags 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'name', true) != '' then json_extract_path_text(_airbyte_data, 'name', true) end as name, 2022-04-19 13:15:46 normalization > case when json_extract_path_text(_airbyte_data, 'count', true) != '' then json_extract_path_text(_airbyte_data, 'count', true) end as count, 2022-04-19 13:15:46 normalization > _airbyte_ab_id, 2022-04-19 13:15:46 normalization > _airbyte_emitted_at, 2022-04-19 13:15:46 normalization > getdate() as _airbyte_normalized_at 2022-04-19 13:15:46 normalization > from "datalake".zendesk._airbyte_raw_tags as table_alias 2022-04-19 13:15:46 normalization > -- tags 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ), __dbt__cte__tags_ab2 as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > -- SQL model to cast each column to its adequate SQL type converted from the JSON schema type 2022-04-19 13:15:46 normalization > -- depends_on: __dbt__cte__tags_ab1 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > cast(name as varchar) as name, 2022-04-19 13:15:46 normalization > cast(count as 2022-04-19 13:15:46 normalization > bigint 2022-04-19 13:15:46 normalization > ) as count, 2022-04-19 13:15:46 normalization > _airbyte_ab_id, 2022-04-19 13:15:46 normalization > _airbyte_emitted_at, 2022-04-19 13:15:46 normalization > getdate() as _airbyte_normalized_at 2022-04-19 13:15:46 normalization > from __dbt__cte__tags_ab1 2022-04-19 13:15:46 normalization > -- tags 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ), __dbt__cte__tags_ab3 as ( 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > -- SQL model to build a hash column based on the values of this record 2022-04-19 13:15:46 normalization > -- depends_on: __dbt__cte__tags_ab2 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > md5(cast(coalesce(cast(name as varchar), '') || '-' || coalesce(cast(count as varchar), '') as varchar)) as _airbyte_tags_hashid, 2022-04-19 13:15:46 normalization > tmp.* 2022-04-19 13:15:46 normalization > from __dbt__cte__tags_ab2 tmp 2022-04-19 13:15:46 normalization > -- tags 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > )-- Final base SQL model 2022-04-19 13:15:46 normalization > -- depends_on: __dbt__cte__tags_ab3 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > name, 2022-04-19 13:15:46 normalization > count, 2022-04-19 13:15:46 normalization > _airbyte_ab_id, 2022-04-19 13:15:46 normalization > _airbyte_emitted_at, 2022-04-19 13:15:46 normalization > getdate() as _airbyte_normalized_at, 2022-04-19 13:15:46 normalization > _airbyte_tags_hashid 2022-04-19 13:15:46 normalization > from __dbt__cte__tags_ab3 2022-04-19 13:15:46 normalization > -- tags from "datalake".zendesk._airbyte_raw_tags 2022-04-19 13:15:46 normalization > where 1 = 1 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > and coalesce( 2022-04-19 13:15:46 normalization > cast(_airbyte_emitted_at as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > ) >= (select max(cast(_airbyte_emitted_at as 2022-04-19 13:15:46 normalization > timestamp with time zone 2022-04-19 13:15:46 normalization > )) from "datalake".zendesk."tags"), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > true) 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ); 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.385547 (Thread-1): Using redshift connection "model.airbyte_utils.brands". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.386301 (Thread-1): On model.airbyte_utils.brands: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.386444 (Thread-1): Opening a new connection, currently in state closed 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.386558 (Thread-1): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.432491 (Thread-2): SQL status: COMMIT in 0.08 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.432813 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metrics_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.432950 (Thread-2): On model.airbyte_utils.ticket_metrics_stg: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.436840 (Thread-2): SQL status: BEGIN in 0.00 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.437571 (Thread-2): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.437773 (Thread-2): On model.airbyte_utils.ticket_metrics_stg: ROLLBACK 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.439751 (Thread-1): SQL status: BEGIN in 0.05 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.439919 (Thread-1): Using redshift connection "model.airbyte_utils.brands". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.440045 (Thread-1): On model.airbyte_utils.brands: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.brands"} */ 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > with bound_views as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > ordinal_position, 2022-04-19 13:15:46 normalization > table_schema, 2022-04-19 13:15:46 normalization > column_name, 2022-04-19 13:15:46 normalization > data_type, 2022-04-19 13:15:46 normalization > character_maximum_length, 2022-04-19 13:15:46 normalization > numeric_precision, 2022-04-19 13:15:46 normalization > numeric_scale 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > from information_schema."columns" 2022-04-19 13:15:46 normalization > where table_name = 'brands' 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > unbound_views as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > ordinal_position, 2022-04-19 13:15:46 normalization > view_schema, 2022-04-19 13:15:46 normalization > col_name, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:46 normalization > 'character varying' 2022-04-19 13:15:46 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:46 normalization > else col_type 2022-04-19 13:15:46 normalization > end as col_type, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type like 'character%' 2022-04-19 13:15:46 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as character_maximum_length, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_precision, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when col_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_scale 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:46 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:46 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:46 normalization > where view_name = 'brands' 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > external_views as ( 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > columnnum, 2022-04-19 13:15:46 normalization > schemaname, 2022-04-19 13:15:46 normalization > columnname, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:46 normalization > then 'character varying' 2022-04-19 13:15:46 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:46 normalization > else external_type 2022-04-19 13:15:46 normalization > end as external_type, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as character_maximum_length, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_precision, 2022-04-19 13:15:46 normalization > case 2022-04-19 13:15:46 normalization > when external_type like 'numeric%' 2022-04-19 13:15:46 normalization > then nullif( 2022-04-19 13:15:46 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:46 normalization > '')::int 2022-04-19 13:15:46 normalization > else null 2022-04-19 13:15:46 normalization > end as numeric_scale 2022-04-19 13:15:46 normalization > from 2022-04-19 13:15:46 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:46 normalization > where 2022-04-19 13:15:46 normalization > schemaname = 'zendesk' 2022-04-19 13:15:46 normalization > and tablename = 'brands' 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > ), 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > unioned as ( 2022-04-19 13:15:46 normalization > select * from bound_views 2022-04-19 13:15:46 normalization > union all 2022-04-19 13:15:46 normalization > select * from unbound_views 2022-04-19 13:15:46 normalization > union all 2022-04-19 13:15:46 normalization > select * from external_views 2022-04-19 13:15:46 normalization > ) 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > select 2022-04-19 13:15:46 normalization > column_name, 2022-04-19 13:15:46 normalization > data_type, 2022-04-19 13:15:46 normalization > character_maximum_length, 2022-04-19 13:15:46 normalization > numeric_precision, 2022-04-19 13:15:46 normalization > numeric_scale 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > from unioned 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > order by ordinal_position 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.441305 (Thread-2): On model.airbyte_utils.ticket_metrics_stg: Close 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.442122 (Thread-2): 13:15:09 | 5 of 33 OK created view model _airbyte_zendesk.ticket_metrics_stg............................................ [CREATE VIEW in 1.14s] 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.442876 (Thread-2): Finished running node model.airbyte_utils.ticket_metrics_stg 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.443142 (Thread-2): Began running node model.airbyte_utils.tickets_stg 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.443694 (Thread-2): 13:15:09 | 7 of 33 START view model _airbyte_zendesk.tickets_stg........................................................ [RUN] 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.444377 (Thread-2): Acquiring new redshift connection "model.airbyte_utils.tickets_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.444564 (Thread-2): Compiling model.airbyte_utils.tickets_stg 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.698517 (Thread-2): Writing injected SQL for node "model.airbyte_utils.tickets_stg" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.698990 (Thread-2): finished collecting timing info 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.703459 (Thread-2): Writing runtime SQL for node "model.airbyte_utils.tickets_stg" 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.703822 (Thread-2): Using redshift connection "model.airbyte_utils.tickets_stg". 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.703959 (Thread-2): On model.airbyte_utils.tickets_stg: BEGIN 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.704094 (Thread-2): Opening a new connection, currently in state closed 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.704207 (Thread-2): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.710830 (Thread-4): SQL status: SELECT in 0.32 seconds 2022-04-19 13:15:46 normalization > 2022-04-19 13:15:09.719008 (Thread-4): Using redshift connection "model.airbyte_utils.tags". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.719174 (Thread-4): On model.airbyte_utils.tags: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tags"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'tags__dbt_tmp131508900954' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'tags__dbt_tmp131508900954' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'None' 2022-04-19 13:15:47 normalization > and tablename = 'tags__dbt_tmp131508900954' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.728876 (Thread-3): SQL status: SELECT in 0.34 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.733332 (Thread-3): Using redshift connection "model.airbyte_utils.sla_policies". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.733496 (Thread-3): On model.airbyte_utils.sla_policies: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.sla_policies"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'sla_policies__dbt_tmp131508914710' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'sla_policies__dbt_tmp131508914710' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'None' 2022-04-19 13:15:47 normalization > and tablename = 'sla_policies__dbt_tmp131508914710' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.740395 (Thread-1): SQL status: SELECT in 0.30 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.756820 (Thread-1): Writing injected SQL for node "model.airbyte_utils.brands" 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.757230 (Thread-1): finished collecting timing info 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.782475 (Thread-1): Using redshift connection "model.airbyte_utils.brands". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.782792 (Thread-1): On model.airbyte_utils.brands: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.brands"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'brands' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'brands' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'brands' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.789186 (Thread-2): SQL status: BEGIN in 0.09 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.789439 (Thread-2): Using redshift connection "model.airbyte_utils.tickets_stg". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.789573 (Thread-2): On model.airbyte_utils.tickets_stg: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_stg"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > create view "datalake"._airbyte_zendesk."tickets_stg__dbt_tmp" as ( 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with __dbt__cte__tickets_ab1 as ( 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > -- SQL model to parse JSON blob stored in a single column and extract into separated field columns as described by the JSON Schema 2022-04-19 13:15:47 normalization > -- depends_on: "datalake".zendesk._airbyte_raw_tickets 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'id', true) != '' then json_extract_path_text(_airbyte_data, 'id', true) end as id, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'url', true) != '' then json_extract_path_text(_airbyte_data, 'url', true) end as url, 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > case when json_extract_path_text(table_alias._airbyte_data, 'via', true) != '' then json_extract_path_text(table_alias._airbyte_data, 'via', true) end 2022-04-19 13:15:47 normalization > as via, 2022-04-19 13:15:47 normalization > json_extract_path_text(_airbyte_data, 'tags', true) as tags, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'type', true) != '' then json_extract_path_text(_airbyte_data, 'type', true) end as type, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'due_at', true) != '' then json_extract_path_text(_airbyte_data, 'due_at', true) end as due_at, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'status', true) != '' then json_extract_path_text(_airbyte_data, 'status', true) end as status, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'subject', true) != '' then json_extract_path_text(_airbyte_data, 'subject', true) end as subject, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'brand_id', true) != '' then json_extract_path_text(_airbyte_data, 'brand_id', true) end as brand_id, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'group_id', true) != '' then json_extract_path_text(_airbyte_data, 'group_id', true) end as group_id, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'priority', true) != '' then json_extract_path_text(_airbyte_data, 'priority', true) end as priority, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'is_public', true) != '' then json_extract_path_text(_airbyte_data, 'is_public', true) end as is_public, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'recipient', true) != '' then json_extract_path_text(_airbyte_data, 'recipient', true) end as recipient, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'created_at', true) != '' then json_extract_path_text(_airbyte_data, 'created_at', true) end as created_at, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'problem_id', true) != '' then json_extract_path_text(_airbyte_data, 'problem_id', true) end as problem_id, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'updated_at', true) != '' then json_extract_path_text(_airbyte_data, 'updated_at', true) end as updated_at, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'assignee_id', true) != '' then json_extract_path_text(_airbyte_data, 'assignee_id', true) end as assignee_id, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'description', true) != '' then json_extract_path_text(_airbyte_data, 'description', true) end as description, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'external_id', true) != '' then json_extract_path_text(_airbyte_data, 'external_id', true) end as external_id, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'raw_subject', true) != '' then json_extract_path_text(_airbyte_data, 'raw_subject', true) end as raw_subject, 2022-04-19 13:15:47 normalization > json_extract_path_text(_airbyte_data, 'email_cc_ids', true) as email_cc_ids, 2022-04-19 13:15:47 normalization > json_extract_path_text(_airbyte_data, 'follower_ids', true) as follower_ids, 2022-04-19 13:15:47 normalization > json_extract_path_text(_airbyte_data, 'followup_ids', true) as followup_ids, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'requester_id', true) != '' then json_extract_path_text(_airbyte_data, 'requester_id', true) end as requester_id, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'submitter_id', true) != '' then json_extract_path_text(_airbyte_data, 'submitter_id', true) end as submitter_id, 2022-04-19 13:15:47 normalization > json_extract_path_text(_airbyte_data, 'custom_fields', true) as custom_fields, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'has_incidents', true) != '' then json_extract_path_text(_airbyte_data, 'has_incidents', true) end as has_incidents, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'forum_topic_id', true) != '' then json_extract_path_text(_airbyte_data, 'forum_topic_id', true) end as forum_topic_id, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'ticket_form_id', true) != '' then json_extract_path_text(_airbyte_data, 'ticket_form_id', true) end as ticket_form_id, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'organization_id', true) != '' then json_extract_path_text(_airbyte_data, 'organization_id', true) end as organization_id, 2022-04-19 13:15:47 normalization > json_extract_path_text(_airbyte_data, 'collaborator_ids', true) as collaborator_ids, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'allow_attachments', true) != '' then json_extract_path_text(_airbyte_data, 'allow_attachments', true) end as allow_attachments, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'allow_channelback', true) != '' then json_extract_path_text(_airbyte_data, 'allow_channelback', true) end as allow_channelback, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'generated_timestamp', true) != '' then json_extract_path_text(_airbyte_data, 'generated_timestamp', true) end as generated_timestamp, 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > case when json_extract_path_text(table_alias._airbyte_data, 'satisfaction_rating', true) != '' then json_extract_path_text(table_alias._airbyte_data, 'satisfaction_rating', true) end 2022-04-19 13:15:47 normalization > as satisfaction_rating, 2022-04-19 13:15:47 normalization > json_extract_path_text(_airbyte_data, 'sharing_agreement_ids', true) as sharing_agreement_ids, 2022-04-19 13:15:47 normalization > _airbyte_ab_id, 2022-04-19 13:15:47 normalization > _airbyte_emitted_at, 2022-04-19 13:15:47 normalization > getdate() as _airbyte_normalized_at 2022-04-19 13:15:47 normalization > from "datalake".zendesk._airbyte_raw_tickets as table_alias 2022-04-19 13:15:47 normalization > -- tickets 2022-04-19 13:15:47 normalization > where 1 = 1 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), __dbt__cte__tickets_ab2 as ( 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > -- SQL model to cast each column to its adequate SQL type converted from the JSON schema type 2022-04-19 13:15:47 normalization > -- depends_on: __dbt__cte__tickets_ab1 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > cast(id as 2022-04-19 13:15:47 normalization > bigint 2022-04-19 13:15:47 normalization > ) as id, 2022-04-19 13:15:47 normalization > cast(url as varchar) as url, 2022-04-19 13:15:47 normalization > cast(via as varchar) as via, 2022-04-19 13:15:47 normalization > tags, 2022-04-19 13:15:47 normalization > cast(type as varchar) as type, 2022-04-19 13:15:47 normalization > cast(nullif(due_at, '') as 2022-04-19 13:15:47 normalization > timestamp with time zone 2022-04-19 13:15:47 normalization > ) as due_at, 2022-04-19 13:15:47 normalization > cast(status as varchar) as status, 2022-04-19 13:15:47 normalization > cast(subject as varchar) as subject, 2022-04-19 13:15:47 normalization > cast(brand_id as 2022-04-19 13:15:47 normalization > bigint 2022-04-19 13:15:47 normalization > ) as brand_id, 2022-04-19 13:15:47 normalization > cast(group_id as 2022-04-19 13:15:47 normalization > bigint 2022-04-19 13:15:47 normalization > ) as group_id, 2022-04-19 13:15:47 normalization > cast(priority as varchar) as priority, 2022-04-19 13:15:47 normalization > cast(decode(is_public, 'true', '1', 'false', '0')::integer as boolean) as is_public, 2022-04-19 13:15:47 normalization > cast(recipient as varchar) as recipient, 2022-04-19 13:15:47 normalization > cast(nullif(created_at, '') as 2022-04-19 13:15:47 normalization > timestamp with time zone 2022-04-19 13:15:47 normalization > ) as created_at, 2022-04-19 13:15:47 normalization > cast(problem_id as 2022-04-19 13:15:47 normalization > bigint 2022-04-19 13:15:47 normalization > ) as problem_id, 2022-04-19 13:15:47 normalization > cast(nullif(updated_at, '') as 2022-04-19 13:15:47 normalization > timestamp with time zone 2022-04-19 13:15:47 normalization > ) as updated_at, 2022-04-19 13:15:47 normalization > cast(assignee_id as 2022-04-19 13:15:47 normalization > bigint 2022-04-19 13:15:47 normalization > ) as assignee_id, 2022-04-19 13:15:47 normalization > cast(description as varchar) as description, 2022-04-19 13:15:47 normalization > cast(external_id as varchar) as external_id, 2022-04-19 13:15:47 normalization > cast(raw_subject as varchar) as raw_subject, 2022-04-19 13:15:47 normalization > email_cc_ids, 2022-04-19 13:15:47 normalization > follower_ids, 2022-04-19 13:15:47 normalization > followup_ids, 2022-04-19 13:15:47 normalization > cast(requester_id as 2022-04-19 13:15:47 normalization > bigint 2022-04-19 13:15:47 normalization > ) as requester_id, 2022-04-19 13:15:47 normalization > cast(submitter_id as 2022-04-19 13:15:47 normalization > bigint 2022-04-19 13:15:47 normalization > ) as submitter_id, 2022-04-19 13:15:47 normalization > custom_fields, 2022-04-19 13:15:47 normalization > cast(decode(has_incidents, 'true', '1', 'false', '0')::integer as boolean) as has_incidents, 2022-04-19 13:15:47 normalization > cast(forum_topic_id as 2022-04-19 13:15:47 normalization > bigint 2022-04-19 13:15:47 normalization > ) as forum_topic_id, 2022-04-19 13:15:47 normalization > cast(ticket_form_id as 2022-04-19 13:15:47 normalization > bigint 2022-04-19 13:15:47 normalization > ) as ticket_form_id, 2022-04-19 13:15:47 normalization > cast(organization_id as 2022-04-19 13:15:47 normalization > bigint 2022-04-19 13:15:47 normalization > ) as organization_id, 2022-04-19 13:15:47 normalization > collaborator_ids, 2022-04-19 13:15:47 normalization > cast(decode(allow_attachments, 'true', '1', 'false', '0')::integer as boolean) as allow_attachments, 2022-04-19 13:15:47 normalization > cast(decode(allow_channelback, 'true', '1', 'false', '0')::integer as boolean) as allow_channelback, 2022-04-19 13:15:47 normalization > cast(generated_timestamp as 2022-04-19 13:15:47 normalization > bigint 2022-04-19 13:15:47 normalization > ) as generated_timestamp, 2022-04-19 13:15:47 normalization > cast(satisfaction_rating as varchar) as satisfaction_rating, 2022-04-19 13:15:47 normalization > sharing_agreement_ids, 2022-04-19 13:15:47 normalization > _airbyte_ab_id, 2022-04-19 13:15:47 normalization > _airbyte_emitted_at, 2022-04-19 13:15:47 normalization > getdate() as _airbyte_normalized_at 2022-04-19 13:15:47 normalization > from __dbt__cte__tickets_ab1 2022-04-19 13:15:47 normalization > -- tickets 2022-04-19 13:15:47 normalization > where 1 = 1 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > )-- SQL model to build a hash column based on the values of this record 2022-04-19 13:15:47 normalization > -- depends_on: __dbt__cte__tickets_ab2 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > md5(cast(coalesce(cast(id as varchar), '') || '-' || coalesce(cast(url as varchar), '') || '-' || coalesce(cast(via as varchar), '') || '-' || coalesce(cast(tags as varchar), '') || '-' || coalesce(cast(type as varchar), '') || '-' || coalesce(cast(due_at as varchar), '') || '-' || coalesce(cast(status as varchar), '') || '-' || coalesce(cast(subject as varchar), '') || '-' || coalesce(cast(brand_id as varchar), '') || '-' || coalesce(cast(group_id as varchar), '') || '-' || coalesce(cast(priority as varchar), '') || '-' || coalesce(cast(case when is_public then 'true' else 'false' end as varchar), '') || '-' || coalesce(cast(recipient as varchar), '') || '-' || coalesce(cast(created_at as varchar), '') || '-' || coalesce(cast(problem_id as varchar), '') || '-' || coalesce(cast(updated_at as varchar), '') || '-' || coalesce(cast(assignee_id as varchar), '') || '-' || coalesce(cast(description as varchar), '') || '-' || coalesce(cast(external_id as varchar), '') || '-' || coalesce(cast(raw_subject as varchar), '') || '-' || coalesce(cast(email_cc_ids as varchar), '') || '-' || coalesce(cast(follower_ids as varchar), '') || '-' || coalesce(cast(followup_ids as varchar), '') || '-' || coalesce(cast(requester_id as varchar), '') || '-' || coalesce(cast(submitter_id as varchar), '') || '-' || coalesce(cast(custom_fields as varchar), '') || '-' || coalesce(cast(case when has_incidents then 'true' else 'false' end as varchar), '') || '-' || coalesce(cast(forum_topic_id as varchar), '') || '-' || coalesce(cast(ticket_form_id as varchar), '') || '-' || coalesce(cast(organization_id as varchar), '') || '-' || coalesce(cast(collaborator_ids as varchar), '') || '-' || coalesce(cast(case when allow_attachments then 'true' else 'false' end as varchar), '') || '-' || coalesce(cast(case when allow_channelback then 'true' else 'false' end as varchar), '') || '-' || coalesce(cast(generated_timestamp as varchar), '') || '-' || coalesce(cast(satisfaction_rating as varchar), '') || '-' || coalesce(cast(sharing_agreement_ids as varchar), '') as varchar)) as _airbyte_tickets_hashid, 2022-04-19 13:15:47 normalization > tmp.* 2022-04-19 13:15:47 normalization > from __dbt__cte__tickets_ab2 tmp 2022-04-19 13:15:47 normalization > -- tickets 2022-04-19 13:15:47 normalization > where 1 = 1 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ) ; 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.829247 (Thread-2): SQL status: CREATE VIEW in 0.04 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.833655 (Thread-2): Using redshift connection "model.airbyte_utils.tickets_stg". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.833824 (Thread-2): On model.airbyte_utils.tickets_stg: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_stg"} */ 2022-04-19 13:15:47 normalization > alter table "datalake"."_airbyte_zendesk"."tickets_stg" rename to "tickets_stg__dbt_backup" 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.839904 (Thread-2): SQL status: ALTER TABLE in 0.01 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.849578 (Thread-2): Using redshift connection "model.airbyte_utils.tickets_stg". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.849771 (Thread-2): On model.airbyte_utils.tickets_stg: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_stg"} */ 2022-04-19 13:15:47 normalization > alter table "datalake"._airbyte_zendesk."tickets_stg__dbt_tmp" rename to "tickets_stg" 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.855119 (Thread-2): SQL status: ALTER TABLE in 0.01 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.857421 (Thread-2): On model.airbyte_utils.tickets_stg: COMMIT 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.857579 (Thread-2): Using redshift connection "model.airbyte_utils.tickets_stg". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.857700 (Thread-2): On model.airbyte_utils.tickets_stg: COMMIT 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.944560 (Thread-2): SQL status: COMMIT in 0.09 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.945153 (Thread-2): Using redshift connection "model.airbyte_utils.tickets_stg". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.945304 (Thread-2): On model.airbyte_utils.tickets_stg: BEGIN 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.949321 (Thread-2): SQL status: BEGIN in 0.00 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.952536 (Thread-2): Using redshift connection "model.airbyte_utils.tickets_stg". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.952691 (Thread-2): On model.airbyte_utils.tickets_stg: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_stg"} */ 2022-04-19 13:15:47 normalization > drop view if exists "datalake"._airbyte_zendesk."tickets_stg__dbt_backup" cascade 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.971709 (Thread-2): SQL status: DROP VIEW in 0.02 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.972935 (Thread-2): On model.airbyte_utils.tickets_stg: COMMIT 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.973091 (Thread-2): Using redshift connection "model.airbyte_utils.tickets_stg". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:09.973218 (Thread-2): On model.airbyte_utils.tickets_stg: COMMIT 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.047336 (Thread-2): SQL status: COMMIT in 0.07 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.047667 (Thread-2): Using redshift connection "model.airbyte_utils.tickets_stg". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.047804 (Thread-2): On model.airbyte_utils.tickets_stg: BEGIN 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.051797 (Thread-2): SQL status: BEGIN in 0.00 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.052564 (Thread-2): finished collecting timing info 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.052779 (Thread-2): On model.airbyte_utils.tickets_stg: ROLLBACK 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.055990 (Thread-2): On model.airbyte_utils.tickets_stg: Close 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.056877 (Thread-2): 13:15:10 | 7 of 33 OK created view model _airbyte_zendesk.tickets_stg................................................... [CREATE VIEW in 0.61s] 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.057294 (Thread-2): Finished running node model.airbyte_utils.tickets_stg 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.058054 (Thread-2): Began running node model.airbyte_utils.ticket_metric_events_scd 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.058615 (Thread-2): 13:15:10 | 8 of 33 START incremental model zendesk.ticket_metric_events_scd............................................. [RUN] 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.059193 (Thread-2): Acquiring new redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.059373 (Thread-2): Compiling model.airbyte_utils.ticket_metric_events_scd 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.101775 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.102031 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: BEGIN 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.102175 (Thread-2): Opening a new connection, currently in state closed 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.102287 (Thread-2): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.125741 (Thread-1): SQL status: SELECT in 0.34 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.131823 (Thread-1): Using redshift connection "model.airbyte_utils.brands". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.131998 (Thread-1): On model.airbyte_utils.brands: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.brands"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > create temporary table 2022-04-19 13:15:47 normalization > "brands__dbt_tmp131509771308" 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > compound sortkey(_airbyte_emitted_at) 2022-04-19 13:15:47 normalization > as ( 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with __dbt__cte__brands_ab1 as ( 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > -- SQL model to parse JSON blob stored in a single column and extract into separated field columns as described by the JSON Schema 2022-04-19 13:15:47 normalization > -- depends_on: "datalake".zendesk._airbyte_raw_brands 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'id', true) != '' then json_extract_path_text(_airbyte_data, 'id', true) end as id, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'url', true) != '' then json_extract_path_text(_airbyte_data, 'url', true) end as url, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'logo', true) != '' then json_extract_path_text(_airbyte_data, 'logo', true) end as logo, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'name', true) != '' then json_extract_path_text(_airbyte_data, 'name', true) end as name, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'active', true) != '' then json_extract_path_text(_airbyte_data, 'active', true) end as active, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'default', true) != '' then json_extract_path_text(_airbyte_data, 'default', true) end as "default", 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'brand_url', true) != '' then json_extract_path_text(_airbyte_data, 'brand_url', true) end as brand_url, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'subdomain', true) != '' then json_extract_path_text(_airbyte_data, 'subdomain', true) end as subdomain, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'created_at', true) != '' then json_extract_path_text(_airbyte_data, 'created_at', true) end as created_at, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'is_deleted', true) != '' then json_extract_path_text(_airbyte_data, 'is_deleted', true) end as is_deleted, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'updated_at', true) != '' then json_extract_path_text(_airbyte_data, 'updated_at', true) end as updated_at, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'host_mapping', true) != '' then json_extract_path_text(_airbyte_data, 'host_mapping', true) end as host_mapping, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'has_help_center', true) != '' then json_extract_path_text(_airbyte_data, 'has_help_center', true) end as has_help_center, 2022-04-19 13:15:47 normalization > json_extract_path_text(_airbyte_data, 'ticket_form_ids', true) as ticket_form_ids, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'help_center_state', true) != '' then json_extract_path_text(_airbyte_data, 'help_center_state', true) end as help_center_state, 2022-04-19 13:15:47 normalization > case when json_extract_path_text(_airbyte_data, 'signature_template', true) != '' then json_extract_path_text(_airbyte_data, 'signature_template', true) end as signature_template, 2022-04-19 13:15:47 normalization > _airbyte_ab_id, 2022-04-19 13:15:47 normalization > _airbyte_emitted_at, 2022-04-19 13:15:47 normalization > getdate() as _airbyte_normalized_at 2022-04-19 13:15:47 normalization > from "datalake".zendesk._airbyte_raw_brands as table_alias 2022-04-19 13:15:47 normalization > -- brands 2022-04-19 13:15:47 normalization > where 1 = 1 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), __dbt__cte__brands_ab2 as ( 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > -- SQL model to cast each column to its adequate SQL type converted from the JSON schema type 2022-04-19 13:15:47 normalization > -- depends_on: __dbt__cte__brands_ab1 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > cast(id as 2022-04-19 13:15:47 normalization > bigint 2022-04-19 13:15:47 normalization > ) as id, 2022-04-19 13:15:47 normalization > cast(url as varchar) as url, 2022-04-19 13:15:47 normalization > cast(logo as varchar) as logo, 2022-04-19 13:15:47 normalization > cast(name as varchar) as name, 2022-04-19 13:15:47 normalization > cast(decode(active, 'true', '1', 'false', '0')::integer as boolean) as active, 2022-04-19 13:15:47 normalization > cast(decode("default", 'true', '1', 'false', '0')::integer as boolean) as "default", 2022-04-19 13:15:47 normalization > cast(brand_url as varchar) as brand_url, 2022-04-19 13:15:47 normalization > cast(subdomain as varchar) as subdomain, 2022-04-19 13:15:47 normalization > cast(nullif(created_at, '') as 2022-04-19 13:15:47 normalization > timestamp with time zone 2022-04-19 13:15:47 normalization > ) as created_at, 2022-04-19 13:15:47 normalization > cast(decode(is_deleted, 'true', '1', 'false', '0')::integer as boolean) as is_deleted, 2022-04-19 13:15:47 normalization > cast(nullif(updated_at, '') as 2022-04-19 13:15:47 normalization > timestamp with time zone 2022-04-19 13:15:47 normalization > ) as updated_at, 2022-04-19 13:15:47 normalization > cast(host_mapping as varchar) as host_mapping, 2022-04-19 13:15:47 normalization > cast(decode(has_help_center, 'true', '1', 'false', '0')::integer as boolean) as has_help_center, 2022-04-19 13:15:47 normalization > ticket_form_ids, 2022-04-19 13:15:47 normalization > cast(help_center_state as varchar) as help_center_state, 2022-04-19 13:15:47 normalization > cast(signature_template as varchar) as signature_template, 2022-04-19 13:15:47 normalization > _airbyte_ab_id, 2022-04-19 13:15:47 normalization > _airbyte_emitted_at, 2022-04-19 13:15:47 normalization > getdate() as _airbyte_normalized_at 2022-04-19 13:15:47 normalization > from __dbt__cte__brands_ab1 2022-04-19 13:15:47 normalization > -- brands 2022-04-19 13:15:47 normalization > where 1 = 1 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), __dbt__cte__brands_ab3 as ( 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > -- SQL model to build a hash column based on the values of this record 2022-04-19 13:15:47 normalization > -- depends_on: __dbt__cte__brands_ab2 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > md5(cast(coalesce(cast(id as varchar), '') || '-' || coalesce(cast(url as varchar), '') || '-' || coalesce(cast(logo as varchar), '') || '-' || coalesce(cast(name as varchar), '') || '-' || coalesce(cast(case when active then 'true' else 'false' end as varchar), '') || '-' || coalesce(cast(case when "default" then 'true' else 'false' end as varchar), '') || '-' || coalesce(cast(brand_url as varchar), '') || '-' || coalesce(cast(subdomain as varchar), '') || '-' || coalesce(cast(created_at as varchar), '') || '-' || coalesce(cast(case when is_deleted then 'true' else 'false' end as varchar), '') || '-' || coalesce(cast(updated_at as varchar), '') || '-' || coalesce(cast(host_mapping as varchar), '') || '-' || coalesce(cast(case when has_help_center then 'true' else 'false' end as varchar), '') || '-' || coalesce(cast(ticket_form_ids as varchar), '') || '-' || coalesce(cast(help_center_state as varchar), '') || '-' || coalesce(cast(signature_template as varchar), '') as varchar)) as _airbyte_brands_hashid, 2022-04-19 13:15:47 normalization > tmp.* 2022-04-19 13:15:47 normalization > from __dbt__cte__brands_ab2 tmp 2022-04-19 13:15:47 normalization > -- brands 2022-04-19 13:15:47 normalization > where 1 = 1 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > )-- Final base SQL model 2022-04-19 13:15:47 normalization > -- depends_on: __dbt__cte__brands_ab3 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > id, 2022-04-19 13:15:47 normalization > url, 2022-04-19 13:15:47 normalization > logo, 2022-04-19 13:15:47 normalization > name, 2022-04-19 13:15:47 normalization > active, 2022-04-19 13:15:47 normalization > "default", 2022-04-19 13:15:47 normalization > brand_url, 2022-04-19 13:15:47 normalization > subdomain, 2022-04-19 13:15:47 normalization > created_at, 2022-04-19 13:15:47 normalization > is_deleted, 2022-04-19 13:15:47 normalization > updated_at, 2022-04-19 13:15:47 normalization > host_mapping, 2022-04-19 13:15:47 normalization > has_help_center, 2022-04-19 13:15:47 normalization > ticket_form_ids, 2022-04-19 13:15:47 normalization > help_center_state, 2022-04-19 13:15:47 normalization > signature_template, 2022-04-19 13:15:47 normalization > _airbyte_ab_id, 2022-04-19 13:15:47 normalization > _airbyte_emitted_at, 2022-04-19 13:15:47 normalization > getdate() as _airbyte_normalized_at, 2022-04-19 13:15:47 normalization > _airbyte_brands_hashid 2022-04-19 13:15:47 normalization > from __dbt__cte__brands_ab3 2022-04-19 13:15:47 normalization > -- brands from "datalake".zendesk._airbyte_raw_brands 2022-04-19 13:15:47 normalization > where 1 = 1 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > and coalesce( 2022-04-19 13:15:47 normalization > cast(_airbyte_emitted_at as 2022-04-19 13:15:47 normalization > timestamp with time zone 2022-04-19 13:15:47 normalization > ) >= (select max(cast(_airbyte_emitted_at as 2022-04-19 13:15:47 normalization > timestamp with time zone 2022-04-19 13:15:47 normalization > )) from "datalake".zendesk."brands"), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > true) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ); 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.144381 (Thread-4): SQL status: SELECT in 0.43 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.148992 (Thread-4): Using redshift connection "model.airbyte_utils.tags". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.149151 (Thread-4): On model.airbyte_utils.tags: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tags"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'tags' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'tags' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'tags' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.187864 (Thread-2): SQL status: BEGIN in 0.09 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.188142 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.188306 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.199723 (Thread-3): SQL status: SELECT in 0.47 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.204556 (Thread-3): Using redshift connection "model.airbyte_utils.sla_policies". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.204722 (Thread-3): On model.airbyte_utils.sla_policies: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.sla_policies"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'sla_policies' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'sla_policies' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'sla_policies' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.553545 (Thread-1): SQL status: SELECT in 0.42 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.559366 (Thread-1): Using redshift connection "model.airbyte_utils.brands". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.559544 (Thread-1): On model.airbyte_utils.brands: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.brands"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'brands__dbt_tmp131509771308' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'brands__dbt_tmp131509771308' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'None' 2022-04-19 13:15:47 normalization > and tablename = 'brands__dbt_tmp131509771308' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.585584 (Thread-4): SQL status: SELECT in 0.44 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.620455 (Thread-4): Using redshift connection "model.airbyte_utils.tags". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.620714 (Thread-4): On model.airbyte_utils.tags: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tags"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'tags__dbt_tmp131508900954' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'tags__dbt_tmp131508900954' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'None' 2022-04-19 13:15:47 normalization > and tablename = 'tags__dbt_tmp131508900954' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.645883 (Thread-3): SQL status: SELECT in 0.44 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.651272 (Thread-3): Using redshift connection "model.airbyte_utils.sla_policies". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.651450 (Thread-3): On model.airbyte_utils.sla_policies: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.sla_policies"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'sla_policies__dbt_tmp131508914710' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'sla_policies__dbt_tmp131508914710' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'None' 2022-04-19 13:15:47 normalization > and tablename = 'sla_policies__dbt_tmp131508914710' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.749798 (Thread-2): SQL status: SELECT in 0.56 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.757244 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.757458 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.930823 (Thread-1): SQL status: SELECT in 0.37 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.936139 (Thread-1): Using redshift connection "model.airbyte_utils.brands". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:10.936357 (Thread-1): On model.airbyte_utils.brands: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.brands"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'brands' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'brands' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'brands' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.076375 (Thread-3): SQL status: SELECT in 0.42 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.081590 (Thread-3): Using redshift connection "model.airbyte_utils.sla_policies". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.081773 (Thread-4): SQL status: SELECT in 0.46 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.088043 (Thread-4): Using redshift connection "model.airbyte_utils.tags". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.081955 (Thread-3): On model.airbyte_utils.sla_policies: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.sla_policies"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'sla_policies' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'sla_policies' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'sla_policies' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.088203 (Thread-4): On model.airbyte_utils.tags: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tags"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'tags' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'tags' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'tags' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.124704 (Thread-2): SQL status: SELECT in 0.37 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.191876 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.192126 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metric_events_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metric_events_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metric_events_stg' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.270212 (Thread-1): SQL status: SELECT in 0.33 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.275913 (Thread-1): Using redshift connection "model.airbyte_utils.brands". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.276093 (Thread-1): On model.airbyte_utils.brands: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.brands"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'brands__dbt_tmp131509771308' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'brands__dbt_tmp131509771308' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'None' 2022-04-19 13:15:47 normalization > and tablename = 'brands__dbt_tmp131509771308' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.551237 (Thread-4): SQL status: SELECT in 0.46 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.576435 (Thread-3): SQL status: SELECT in 0.49 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.579986 (Thread-3): 2022-04-19 13:15:47 normalization > In "datalake"."zendesk"."sla_policies": 2022-04-19 13:15:47 normalization > Schema changed: False 2022-04-19 13:15:47 normalization > Source columns not in target: [] 2022-04-19 13:15:47 normalization > Target columns not in source: [] 2022-04-19 13:15:47 normalization > New column types: [] 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.602175 (Thread-3): Using redshift connection "model.airbyte_utils.sla_policies". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.571769 (Thread-4): 2022-04-19 13:15:47 normalization > In "datalake"."zendesk"."tags": 2022-04-19 13:15:47 normalization > Schema changed: False 2022-04-19 13:15:47 normalization > Source columns not in target: [] 2022-04-19 13:15:47 normalization > Target columns not in source: [] 2022-04-19 13:15:47 normalization > New column types: [] 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.605519 (Thread-4): Using redshift connection "model.airbyte_utils.tags". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.605685 (Thread-4): On model.airbyte_utils.tags: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tags"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'tags' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'tags' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'tags' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.613918 (Thread-2): SQL status: SELECT in 0.41 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.615974 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.616155 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.620394 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.620567 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.620712 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.620865 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.621002 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.621135 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.621265 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.621394 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.602479 (Thread-3): On model.airbyte_utils.sla_policies: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.sla_policies"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'sla_policies' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'sla_policies' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'sla_policies' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.628394 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.628731 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.681076 (Thread-1): SQL status: SELECT in 0.40 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.687939 (Thread-1): Using redshift connection "model.airbyte_utils.brands". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:11.688138 (Thread-1): On model.airbyte_utils.brands: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.brands"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'brands' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'brands' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'brands' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.020356 (Thread-3): SQL status: SELECT in 0.39 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.022967 (Thread-3): Writing runtime SQL for node "model.airbyte_utils.sla_policies" 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.023437 (Thread-3): Using redshift connection "model.airbyte_utils.sla_policies". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.023579 (Thread-3): On model.airbyte_utils.sla_policies: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.sla_policies"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > delete 2022-04-19 13:15:47 normalization > from "datalake".zendesk."sla_policies" 2022-04-19 13:15:47 normalization > where (_airbyte_ab_id) in ( 2022-04-19 13:15:47 normalization > select (_airbyte_ab_id) 2022-04-19 13:15:47 normalization > from "sla_policies__dbt_tmp131508914710" 2022-04-19 13:15:47 normalization > ); 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > insert into "datalake".zendesk."sla_policies" ("id", "url", "title", "filter", "position", "created_at", "updated_at", "description", "policy_metrics", "_airbyte_ab_id", "_airbyte_emitted_at", "_airbyte_normalized_at", "_airbyte_sla_policies_hashid") 2022-04-19 13:15:47 normalization > ( 2022-04-19 13:15:47 normalization > select "id", "url", "title", "filter", "position", "created_at", "updated_at", "description", "policy_metrics", "_airbyte_ab_id", "_airbyte_emitted_at", "_airbyte_normalized_at", "_airbyte_sla_policies_hashid" 2022-04-19 13:15:47 normalization > from "sla_policies__dbt_tmp131508914710" 2022-04-19 13:15:47 normalization > ); 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.039794 (Thread-4): SQL status: SELECT in 0.43 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.041842 (Thread-4): Writing runtime SQL for node "model.airbyte_utils.tags" 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.042203 (Thread-4): Using redshift connection "model.airbyte_utils.tags". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.042341 (Thread-4): On model.airbyte_utils.tags: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tags"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > delete 2022-04-19 13:15:47 normalization > from "datalake".zendesk."tags" 2022-04-19 13:15:47 normalization > where (_airbyte_ab_id) in ( 2022-04-19 13:15:47 normalization > select (_airbyte_ab_id) 2022-04-19 13:15:47 normalization > from "tags__dbt_tmp131508900954" 2022-04-19 13:15:47 normalization > ); 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > insert into "datalake".zendesk."tags" ("name", "count", "_airbyte_ab_id", "_airbyte_emitted_at", "_airbyte_normalized_at", "_airbyte_tags_hashid") 2022-04-19 13:15:47 normalization > ( 2022-04-19 13:15:47 normalization > select "name", "count", "_airbyte_ab_id", "_airbyte_emitted_at", "_airbyte_normalized_at", "_airbyte_tags_hashid" 2022-04-19 13:15:47 normalization > from "tags__dbt_tmp131508900954" 2022-04-19 13:15:47 normalization > ); 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.107312 (Thread-2): SQL status: SELECT in 0.48 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.109646 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.109821 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.109965 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.110098 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.110226 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.110350 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.110473 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.110596 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.110718 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.110840 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.110962 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.111084 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.111214 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.111336 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.111463 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.111617 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.111759 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.111895 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.112028 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.112161 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.112327 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.112470 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.112605 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.112741 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.112876 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.140414 (Thread-1): SQL status: SELECT in 0.45 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.153506 (Thread-1): 2022-04-19 13:15:47 normalization > In "datalake"."zendesk"."brands": 2022-04-19 13:15:47 normalization > Schema changed: False 2022-04-19 13:15:47 normalization > Source columns not in target: [] 2022-04-19 13:15:47 normalization > Target columns not in source: [] 2022-04-19 13:15:47 normalization > New column types: [] 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.160404 (Thread-1): Using redshift connection "model.airbyte_utils.brands". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.160861 (Thread-1): On model.airbyte_utils.brands: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.brands"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'brands' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'brands' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'brands' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.160697 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.161137 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metric_events_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metric_events_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metric_events_stg' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.193302 (Thread-3): SQL status: INSERT 0 11 in 0.17 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.198176 (Thread-3): Using redshift connection "model.airbyte_utils.sla_policies". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.198342 (Thread-3): On model.airbyte_utils.sla_policies: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.sla_policies"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'sla_policies' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'sla_policies' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'sla_policies' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.217898 (Thread-4): SQL status: INSERT 0 196 in 0.18 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.222774 (Thread-4): Using redshift connection "model.airbyte_utils.tags". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.222941 (Thread-4): On model.airbyte_utils.tags: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tags"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'tags' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'tags' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'tags' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.574037 (Thread-3): SQL status: SELECT in 0.38 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.576580 (Thread-3): On model.airbyte_utils.sla_policies: COMMIT 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.576740 (Thread-3): Using redshift connection "model.airbyte_utils.sla_policies". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.576865 (Thread-3): On model.airbyte_utils.sla_policies: COMMIT 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.579510 (Thread-2): SQL status: SELECT in 0.42 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.581283 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.581460 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.581600 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.581740 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.581867 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.581993 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.582115 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.582236 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.582358 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.582480 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.582625 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.582764 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.582895 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.583026 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.583161 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.583292 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.583421 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.583843 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.583986 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.584120 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.591619 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.591783 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metric_events_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metric_events_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metric_events_stg' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.624365 (Thread-1): SQL status: SELECT in 0.46 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.627387 (Thread-1): Writing runtime SQL for node "model.airbyte_utils.brands" 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.627776 (Thread-1): Using redshift connection "model.airbyte_utils.brands". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.627914 (Thread-1): On model.airbyte_utils.brands: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.brands"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > delete 2022-04-19 13:15:47 normalization > from "datalake".zendesk."brands" 2022-04-19 13:15:47 normalization > where (_airbyte_ab_id) in ( 2022-04-19 13:15:47 normalization > select (_airbyte_ab_id) 2022-04-19 13:15:47 normalization > from "brands__dbt_tmp131509771308" 2022-04-19 13:15:47 normalization > ); 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > insert into "datalake".zendesk."brands" ("id", "url", "logo", "name", "active", "default", "brand_url", "subdomain", "created_at", "is_deleted", "updated_at", "host_mapping", "has_help_center", "ticket_form_ids", "help_center_state", "signature_template", "_airbyte_ab_id", "_airbyte_emitted_at", "_airbyte_normalized_at", "_airbyte_brands_hashid") 2022-04-19 13:15:47 normalization > ( 2022-04-19 13:15:47 normalization > select "id", "url", "logo", "name", "active", "default", "brand_url", "subdomain", "created_at", "is_deleted", "updated_at", "host_mapping", "has_help_center", "ticket_form_ids", "help_center_state", "signature_template", "_airbyte_ab_id", "_airbyte_emitted_at", "_airbyte_normalized_at", "_airbyte_brands_hashid" 2022-04-19 13:15:47 normalization > from "brands__dbt_tmp131509771308" 2022-04-19 13:15:47 normalization > ); 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.631849 (Thread-4): SQL status: SELECT in 0.41 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.633787 (Thread-4): On model.airbyte_utils.tags: COMMIT 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.633945 (Thread-4): Using redshift connection "model.airbyte_utils.tags". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.634076 (Thread-4): On model.airbyte_utils.tags: COMMIT 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.773343 (Thread-3): SQL status: COMMIT in 0.20 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.774224 (Thread-3): finished collecting timing info 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.774438 (Thread-3): On model.airbyte_utils.sla_policies: Close 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.775282 (Thread-3): 13:15:12 | 4 of 33 OK created incremental model zendesk.sla_policies.................................................... [INSERT 0 11 in 4.71s] 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.775803 (Thread-4): SQL status: COMMIT in 0.14 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.776474 (Thread-4): finished collecting timing info 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.776662 (Thread-4): On model.airbyte_utils.tags: Close 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.777297 (Thread-4): 13:15:12 | 2 of 33 OK created incremental model zendesk.tags............................................................ [INSERT 0 196 in 5.10s] 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.777495 (Thread-3): Finished running node model.airbyte_utils.sla_policies 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.777794 (Thread-3): Began running node model.airbyte_utils.ticket_fields_scd 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.778951 (Thread-3): 13:15:12 | 9 of 33 START incremental model zendesk.ticket_fields_scd.................................................... [RUN] 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.778608 (Thread-4): Finished running node model.airbyte_utils.tags 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.779410 (Thread-4): Began running node model.airbyte_utils.ticket_metrics_scd 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.779805 (Thread-4): 13:15:12 | 10 of 33 START incremental model zendesk.ticket_metrics_scd.................................................. [RUN] 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.780174 (Thread-3): Acquiring new redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.784390 (Thread-3): Compiling model.airbyte_utils.ticket_fields_scd 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.794238 (Thread-4): Acquiring new redshift connection "model.airbyte_utils.ticket_metrics_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.794459 (Thread-4): Compiling model.airbyte_utils.ticket_metrics_scd 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.827387 (Thread-2): SQL status: SELECT in 0.24 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.829517 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.829700 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.829853 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.830006 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.830149 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.830290 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.830431 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.830571 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.830710 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.830849 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.831017 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.831171 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.831325 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.831475 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.831623 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.831770 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.831918 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.832072 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.832218 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.834748 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.838737 (Thread-2): Writing injected SQL for node "model.airbyte_utils.ticket_metric_events_scd" 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.839184 (Thread-2): finished collecting timing info 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.851066 (Thread-4): Using redshift connection "model.airbyte_utils.ticket_metrics_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.868441 (Thread-4): On model.airbyte_utils.ticket_metrics_scd: BEGIN 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.876401 (Thread-4): Opening a new connection, currently in state closed 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.883708 (Thread-3): Using redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.884048 (Thread-3): On model.airbyte_utils.ticket_fields_scd: BEGIN 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.884189 (Thread-3): Opening a new connection, currently in state closed 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.896485 (Thread-1): SQL status: INSERT 0 12 in 0.27 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.906899 (Thread-1): Using redshift connection "model.airbyte_utils.brands". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.907102 (Thread-1): On model.airbyte_utils.brands: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.brands"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'brands' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'brands' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'brands' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.896699 (Thread-3): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.880248 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.907789 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.883874 (Thread-4): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.961591 (Thread-4): SQL status: BEGIN in 0.09 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.961889 (Thread-4): Using redshift connection "model.airbyte_utils.ticket_metrics_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.962026 (Thread-4): On model.airbyte_utils.ticket_metrics_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metrics_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metrics_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metrics_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metrics_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.966453 (Thread-3): SQL status: BEGIN in 0.08 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.966637 (Thread-3): Using redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:12.966767 (Thread-3): On model.airbyte_utils.ticket_fields_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_fields_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_fields_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_fields_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.331527 (Thread-1): SQL status: SELECT in 0.42 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.334486 (Thread-1): On model.airbyte_utils.brands: COMMIT 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.334656 (Thread-1): Using redshift connection "model.airbyte_utils.brands". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.334783 (Thread-1): On model.airbyte_utils.brands: COMMIT 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.377007 (Thread-2): SQL status: SELECT in 0.47 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.382738 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.382904 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > create temporary table 2022-04-19 13:15:47 normalization > "ticket_metric_events_scd__dbt_tmp131512877080" 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > compound sortkey(_airbyte_active_row,_airbyte_unique_key_scd,_airbyte_emitted_at) 2022-04-19 13:15:47 normalization > as ( 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > -- depends_on: ref('ticket_metric_events_stg') 2022-04-19 13:15:47 normalization > with 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > new_data as ( 2022-04-19 13:15:47 normalization > -- retrieve incremental "new" data 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > * 2022-04-19 13:15:47 normalization > from "datalake"._airbyte_zendesk."ticket_metric_events_stg" 2022-04-19 13:15:47 normalization > -- ticket_metric_events from "datalake".zendesk._airbyte_raw_ticket_metric_events 2022-04-19 13:15:47 normalization > where 1 = 1 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > and coalesce( 2022-04-19 13:15:47 normalization > cast(_airbyte_emitted_at as 2022-04-19 13:15:47 normalization > timestamp with time zone 2022-04-19 13:15:47 normalization > ) >= (select max(cast(_airbyte_emitted_at as 2022-04-19 13:15:47 normalization > timestamp with time zone 2022-04-19 13:15:47 normalization > )) from "datalake".zendesk."ticket_metric_events_scd"), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > true) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > new_data_ids as ( 2022-04-19 13:15:47 normalization > -- build a subset of _airbyte_unique_key from rows that are new 2022-04-19 13:15:47 normalization > select distinct 2022-04-19 13:15:47 normalization > md5(cast(coalesce(cast(id as varchar), '') as varchar)) as _airbyte_unique_key 2022-04-19 13:15:47 normalization > from new_data 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > empty_new_data as ( 2022-04-19 13:15:47 normalization > -- build an empty table to only keep the table's column types 2022-04-19 13:15:47 normalization > select * from new_data where 1 = 0 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > previous_active_scd_data as ( 2022-04-19 13:15:47 normalization > -- retrieve "incomplete old" data that needs to be updated with an end date because of new changes 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > this_data."_airbyte_ticket_metric_events_hashid", 2022-04-19 13:15:47 normalization > this_data."id", 2022-04-19 13:15:47 normalization > this_data."time", 2022-04-19 13:15:47 normalization > this_data."type", 2022-04-19 13:15:47 normalization > this_data."metric", 2022-04-19 13:15:47 normalization > this_data."ticket_id", 2022-04-19 13:15:47 normalization > this_data."instance_id", 2022-04-19 13:15:47 normalization > this_data."_airbyte_ab_id", 2022-04-19 13:15:47 normalization > this_data."_airbyte_emitted_at", 2022-04-19 13:15:47 normalization > this_data."_airbyte_normalized_at" 2022-04-19 13:15:47 normalization > from "datalake".zendesk."ticket_metric_events_scd" as this_data 2022-04-19 13:15:47 normalization > -- make a join with new_data using primary key to filter active data that need to be updated only 2022-04-19 13:15:47 normalization > join new_data_ids on this_data._airbyte_unique_key = new_data_ids._airbyte_unique_key 2022-04-19 13:15:47 normalization > -- force left join to NULL values (we just need to transfer column types only for the star_intersect macro on schema changes) 2022-04-19 13:15:47 normalization > left join empty_new_data as inc_data on this_data._airbyte_ab_id = inc_data._airbyte_ab_id 2022-04-19 13:15:47 normalization > where _airbyte_active_row = 1 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > input_data as ( 2022-04-19 13:15:47 normalization > select "_airbyte_ticket_metric_events_hashid", 2022-04-19 13:15:47 normalization > "id", 2022-04-19 13:15:47 normalization > "time", 2022-04-19 13:15:47 normalization > "type", 2022-04-19 13:15:47 normalization > "metric", 2022-04-19 13:15:47 normalization > "ticket_id", 2022-04-19 13:15:47 normalization > "instance_id", 2022-04-19 13:15:47 normalization > "_airbyte_ab_id", 2022-04-19 13:15:47 normalization > "_airbyte_emitted_at", 2022-04-19 13:15:47 normalization > "_airbyte_normalized_at" from new_data 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select "_airbyte_ticket_metric_events_hashid", 2022-04-19 13:15:47 normalization > "id", 2022-04-19 13:15:47 normalization > "time", 2022-04-19 13:15:47 normalization > "type", 2022-04-19 13:15:47 normalization > "metric", 2022-04-19 13:15:47 normalization > "ticket_id", 2022-04-19 13:15:47 normalization > "instance_id", 2022-04-19 13:15:47 normalization > "_airbyte_ab_id", 2022-04-19 13:15:47 normalization > "_airbyte_emitted_at", 2022-04-19 13:15:47 normalization > "_airbyte_normalized_at" from previous_active_scd_data 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > scd_data as ( 2022-04-19 13:15:47 normalization > -- SQL model to build a Type 2 Slowly Changing Dimension (SCD) table for each record identified by their primary key 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > md5(cast(coalesce(cast(id as varchar), '') as varchar)) as _airbyte_unique_key, 2022-04-19 13:15:47 normalization > id, 2022-04-19 13:15:47 normalization > "time", 2022-04-19 13:15:47 normalization > type, 2022-04-19 13:15:47 normalization > metric, 2022-04-19 13:15:47 normalization > ticket_id, 2022-04-19 13:15:47 normalization > instance_id, 2022-04-19 13:15:47 normalization > "time" as _airbyte_start_at, 2022-04-19 13:15:47 normalization > lag("time") over ( 2022-04-19 13:15:47 normalization > partition by id 2022-04-19 13:15:47 normalization > order by 2022-04-19 13:15:47 normalization > "time" is null asc, 2022-04-19 13:15:47 normalization > "time" desc, 2022-04-19 13:15:47 normalization > _airbyte_emitted_at desc 2022-04-19 13:15:47 normalization > ) as _airbyte_end_at, 2022-04-19 13:15:47 normalization > case when row_number() over ( 2022-04-19 13:15:47 normalization > partition by id 2022-04-19 13:15:47 normalization > order by 2022-04-19 13:15:47 normalization > "time" is null asc, 2022-04-19 13:15:47 normalization > "time" desc, 2022-04-19 13:15:47 normalization > _airbyte_emitted_at desc 2022-04-19 13:15:47 normalization > ) = 1 then 1 else 0 end as _airbyte_active_row, 2022-04-19 13:15:47 normalization > _airbyte_ab_id, 2022-04-19 13:15:47 normalization > _airbyte_emitted_at, 2022-04-19 13:15:47 normalization > _airbyte_ticket_metric_events_hashid 2022-04-19 13:15:47 normalization > from input_data 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > dedup_data as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > -- we need to ensure de-duplicated rows for merge/update queries 2022-04-19 13:15:47 normalization > -- additionally, we generate a unique key for the scd table 2022-04-19 13:15:47 normalization > row_number() over ( 2022-04-19 13:15:47 normalization > partition by 2022-04-19 13:15:47 normalization > _airbyte_unique_key, 2022-04-19 13:15:47 normalization > _airbyte_start_at, 2022-04-19 13:15:47 normalization > _airbyte_emitted_at 2022-04-19 13:15:47 normalization > order by _airbyte_active_row desc, _airbyte_ab_id 2022-04-19 13:15:47 normalization > ) as _airbyte_row_num, 2022-04-19 13:15:47 normalization > md5(cast(coalesce(cast(_airbyte_unique_key as varchar), '') || '-' || coalesce(cast(_airbyte_start_at as varchar), '') || '-' || coalesce(cast(_airbyte_emitted_at as varchar), '') as varchar)) as _airbyte_unique_key_scd, 2022-04-19 13:15:47 normalization > scd_data.* 2022-04-19 13:15:47 normalization > from scd_data 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > _airbyte_unique_key, 2022-04-19 13:15:47 normalization > _airbyte_unique_key_scd, 2022-04-19 13:15:47 normalization > id, 2022-04-19 13:15:47 normalization > "time", 2022-04-19 13:15:47 normalization > type, 2022-04-19 13:15:47 normalization > metric, 2022-04-19 13:15:47 normalization > ticket_id, 2022-04-19 13:15:47 normalization > instance_id, 2022-04-19 13:15:47 normalization > _airbyte_start_at, 2022-04-19 13:15:47 normalization > _airbyte_end_at, 2022-04-19 13:15:47 normalization > _airbyte_active_row, 2022-04-19 13:15:47 normalization > _airbyte_ab_id, 2022-04-19 13:15:47 normalization > _airbyte_emitted_at, 2022-04-19 13:15:47 normalization > getdate() as _airbyte_normalized_at, 2022-04-19 13:15:47 normalization > _airbyte_ticket_metric_events_hashid 2022-04-19 13:15:47 normalization > from dedup_data where _airbyte_row_num = 1 2022-04-19 13:15:47 normalization > ); 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.485640 (Thread-3): SQL status: SELECT in 0.52 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.493858 (Thread-3): Using redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.494049 (Thread-3): On model.airbyte_utils.ticket_fields_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_fields_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_fields_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_fields_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.519258 (Thread-4): SQL status: SELECT in 0.56 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.525502 (Thread-1): SQL status: COMMIT in 0.19 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.526117 (Thread-1): finished collecting timing info 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.526325 (Thread-1): On model.airbyte_utils.brands: Close 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.527121 (Thread-1): 13:15:13 | 6 of 33 OK created incremental model zendesk.brands.......................................................... [INSERT 0 12 in 4.19s] 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.535481 (Thread-1): Finished running node model.airbyte_utils.brands 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.535747 (Thread-1): Began running node model.airbyte_utils.tickets_scd 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.536210 (Thread-1): 13:15:13 | 11 of 33 START incremental model zendesk.tickets_scd......................................................... [RUN] 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.536985 (Thread-1): Acquiring new redshift connection "model.airbyte_utils.tickets_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.537178 (Thread-1): Compiling model.airbyte_utils.tickets_scd 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.554870 (Thread-4): Using redshift connection "model.airbyte_utils.ticket_metrics_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.555088 (Thread-4): On model.airbyte_utils.ticket_metrics_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metrics_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metrics_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metrics_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metrics_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.581183 (Thread-1): Using redshift connection "model.airbyte_utils.tickets_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.581441 (Thread-1): On model.airbyte_utils.tickets_scd: BEGIN 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.581591 (Thread-1): Opening a new connection, currently in state closed 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.582627 (Thread-1): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.657339 (Thread-1): SQL status: BEGIN in 0.08 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.657646 (Thread-1): Using redshift connection "model.airbyte_utils.tickets_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.657779 (Thread-1): On model.airbyte_utils.tickets_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'tickets_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'tickets_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'tickets_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.983127 (Thread-3): SQL status: SELECT in 0.49 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.991593 (Thread-3): Using redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:13.991783 (Thread-3): On model.airbyte_utils.ticket_fields_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_fields_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_fields_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_fields_stg' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.067796 (Thread-4): SQL status: SELECT in 0.51 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.086586 (Thread-4): Using redshift connection "model.airbyte_utils.ticket_metrics_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.086805 (Thread-4): On model.airbyte_utils.ticket_metrics_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metrics_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metrics_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metrics_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metrics_stg' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.139162 (Thread-1): SQL status: SELECT in 0.48 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.156527 (Thread-1): Using redshift connection "model.airbyte_utils.tickets_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.156715 (Thread-1): On model.airbyte_utils.tickets_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'tickets_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'tickets_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'tickets_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.405053 (Thread-3): SQL status: SELECT in 0.41 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.407985 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.408161 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.408341 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.408504 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.408646 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.408785 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.408922 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.409064 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.409198 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.409332 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.409524 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.409663 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.409798 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.409935 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.410069 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.410203 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.410346 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.410496 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.410629 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.410761 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.410892 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.411024 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.411202 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.411338 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.411469 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.411627 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.411761 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.411899 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.416467 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.419509 (Thread-3): Using redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.419660 (Thread-3): On model.airbyte_utils.ticket_fields_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_fields_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_fields_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_fields_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.480496 (Thread-2): SQL status: SELECT in 1.10 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.484895 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.485062 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metric_events_scd__dbt_tmp131512877080' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metric_events_scd__dbt_tmp131512877080' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'None' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metric_events_scd__dbt_tmp131512877080' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.586527 (Thread-4): SQL status: SELECT in 0.50 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.589463 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.589641 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.589784 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.589922 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.590051 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.590185 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.590310 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.590432 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.590559 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.590683 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.590804 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.590923 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.591043 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.591164 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.591291 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.591411 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.591532 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.591653 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.591773 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.591897 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.592027 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.592147 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.592295 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.592430 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.592551 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.592672 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.592793 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.592912 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.593030 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.593155 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.593276 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.596189 (Thread-4): Using redshift connection "model.airbyte_utils.ticket_metrics_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.604434 (Thread-4): On model.airbyte_utils.ticket_metrics_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metrics_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metrics_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metrics_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metrics_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.665871 (Thread-1): SQL status: SELECT in 0.51 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.675734 (Thread-1): Using redshift connection "model.airbyte_utils.tickets_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.675902 (Thread-1): On model.airbyte_utils.tickets_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'tickets_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'tickets_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'tickets_stg' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.876091 (Thread-3): SQL status: SELECT in 0.46 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.879052 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.879231 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.879377 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.879523 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.879661 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.879798 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.879934 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.880070 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.880204 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.880379 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.880515 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.880651 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.880791 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.880925 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.881069 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.881203 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.881335 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.881467 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.881599 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.881729 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.881867 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.882002 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.882135 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.882274 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.882406 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.882540 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.882672 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.882803 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.882934 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.883066 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.888378 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.888538 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.888673 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.888802 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.888964 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.889109 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.889247 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.889379 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.889510 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.889639 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.889771 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.889905 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.890038 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.890170 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:14.890300 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.088444 (Thread-2): SQL status: SELECT in 0.60 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.093494 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.093668 (Thread-4): SQL status: SELECT in 0.49 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.093814 (Thread-1): SQL status: SELECT in 0.42 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.108950 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.109159 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.109303 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.109443 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.109576 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.109702 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.109827 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.109952 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.110075 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.110197 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.110324 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.110446 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.110571 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.110693 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.110815 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.110937 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.111057 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.111177 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.111298 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.111418 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.111538 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.111663 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.111785 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.112114 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.102143 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.112462 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.112594 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.112719 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.112853 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.112975 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.113104 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.113225 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.113347 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.113470 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.113598 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.113718 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.113839 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.113959 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.114079 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.114199 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.114317 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.114443 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.114563 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.114682 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.114802 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.114922 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.115042 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.115162 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.115291 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.115413 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.115535 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.115656 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.115777 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.115903 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.116023 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.116145 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.093990 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.119936 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.120177 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.120365 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.120512 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.120652 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.120819 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.120961 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.121095 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.121230 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.121375 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.121507 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.121644 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.121780 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.121912 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.122044 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.122175 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.122307 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.122442 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.112241 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.134907 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.135058 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.135194 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.135322 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.135450 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.135575 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.135704 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.135827 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.135952 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.136073 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.136196 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.136349 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.136476 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.136602 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.136725 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.139403 (Thread-1): Using redshift connection "model.airbyte_utils.tickets_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.139558 (Thread-1): On model.airbyte_utils.tickets_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'tickets_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'tickets_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'tickets_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.119258 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.139881 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.140029 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.140158 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.148392 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.148597 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.148748 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.148890 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.149027 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.149161 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.149295 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.149440 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.149579 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.149708 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.149838 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.149973 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.150104 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.150233 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.150363 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.150494 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.150624 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.150754 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.150887 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.151019 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.151148 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.151276 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.151405 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.151534 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.151663 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.151793 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.151922 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.152050 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.152179 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.156410 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.156590 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.134621 (Thread-3): Using redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.160532 (Thread-3): On model.airbyte_utils.ticket_fields_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_fields_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_fields_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_fields_stg' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.160351 (Thread-4): Using redshift connection "model.airbyte_utils.ticket_metrics_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.160830 (Thread-4): On model.airbyte_utils.ticket_metrics_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metrics_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metrics_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metrics_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metrics_stg' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.487717 (Thread-2): SQL status: SELECT in 0.37 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.493139 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.493306 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metric_events_scd__dbt_tmp131512877080' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metric_events_scd__dbt_tmp131512877080' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'None' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metric_events_scd__dbt_tmp131512877080' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.550090 (Thread-1): SQL status: SELECT in 0.41 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.554890 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.555074 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.555211 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.555340 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.555464 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.555585 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.555706 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.555828 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.555946 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.556065 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.556184 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.556329 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.556458 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.556577 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.556696 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.556815 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.556935 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.557053 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.557174 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.557294 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.557412 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.557542 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.557663 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.557782 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.557907 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.558026 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.558144 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.558263 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.558390 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.558510 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.558628 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.558747 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.558867 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.558985 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.559104 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.559226 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.559345 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.559463 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.559581 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.559700 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.559818 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.559938 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.560056 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.560175 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.572387 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.572618 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.572774 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.572915 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.573058 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.573195 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.573329 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.573471 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.573604 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.573734 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.573864 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.573994 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.574123 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.574254 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.574383 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.574523 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.574654 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.574784 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.574916 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.575044 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.575498 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.575650 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.575786 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.575923 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.576054 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.576182 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.576350 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.576483 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.576613 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.576743 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.576871 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.576998 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.577124 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.577257 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.577386 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.577513 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.577640 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.577766 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.577900 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.578027 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.578155 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.590158 (Thread-1): Using redshift connection "model.airbyte_utils.tickets_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.590336 (Thread-1): On model.airbyte_utils.tickets_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'tickets_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'tickets_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'tickets_stg' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.621775 (Thread-4): SQL status: SELECT in 0.46 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.624749 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.624928 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.625075 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.625206 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.625333 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.625578 (Thread-3): SQL status: SELECT in 0.46 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.627917 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.628080 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.628220 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.631086 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.631257 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.631393 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.631520 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.631645 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.631768 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.631891 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.632017 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.632138 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.632292 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.632425 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.632548 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.632675 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.632797 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.632918 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.633041 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.633163 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.633284 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.633405 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.633525 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.633645 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.633765 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.633885 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.634013 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.634141 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.634262 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.634412 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.634546 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.634675 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.634805 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.634934 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.635063 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.635191 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.635333 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.635464 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.635591 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.635717 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.635841 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.635969 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.636096 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.625758 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.644004 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.644158 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.648453 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.649194 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.649369 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.649505 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.649632 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.649755 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.649877 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.649997 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.650115 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.650235 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.650352 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.650483 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.650609 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.650728 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.650848 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.650966 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.651084 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.651203 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.651322 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.651448 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.651568 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.651685 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.651802 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.651956 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.652091 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.636224 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.660501 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.660662 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.660807 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.660945 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.661080 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.661210 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.661339 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.661470 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.661602 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.661740 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.661869 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.661998 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.662126 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.662255 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.652219 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.670287 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.670448 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.670588 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.670721 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.670852 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.670980 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.671108 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.671235 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.671368 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.671496 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.671622 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.671757 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.671885 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.672012 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.672139 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.680357 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.680596 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.680746 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.680949 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.681158 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.681297 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.681429 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.681560 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.681689 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.681817 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.681943 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.682069 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.682197 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.670078 (Thread-3): Using redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.693959 (Thread-3): On model.airbyte_utils.ticket_fields_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_fields_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_fields_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_fields_stg' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.693772 (Thread-4): Using redshift connection "model.airbyte_utils.ticket_metrics_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.694253 (Thread-4): On model.airbyte_utils.ticket_metrics_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metrics_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metrics_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metrics_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metrics_stg' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.862752 (Thread-2): SQL status: SELECT in 0.37 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.867884 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.868048 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.934791 (Thread-1): SQL status: SELECT in 0.34 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.937857 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.938035 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.938236 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.938391 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.938523 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.938649 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.938780 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.938902 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.939023 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.939145 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.939264 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.939506 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.939633 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.939754 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.939875 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.939997 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.940120 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.940241 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.940415 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.940541 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.940663 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.940785 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.940913 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.941034 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.941154 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.941273 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.941392 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.941519 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.941640 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.941760 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.941878 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.941998 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.942117 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.942237 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.942356 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.942715 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.942858 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.942990 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.943111 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.943230 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.943376 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.943507 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.943634 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.943760 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.943886 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.944010 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.944135 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.944282 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.944423 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.952374 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.952553 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.952706 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.952844 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.952976 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.953115 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.953244 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.953371 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.953497 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.953626 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.953754 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.953880 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.954014 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.954143 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.954270 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.954398 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.954527 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.954655 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.954783 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.954910 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.955037 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.955164 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.955292 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.955428 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.955558 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.955686 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.955814 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.955941 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.956071 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.956201 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.956368 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.973645 (Thread-1): Using redshift connection "model.airbyte_utils.tickets_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:15.973842 (Thread-1): On model.airbyte_utils.tickets_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'tickets_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'tickets_stg' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'tickets_stg' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = '_airbyte_zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.130041 (Thread-3): SQL status: SELECT in 0.44 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.132913 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.133091 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.133233 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.133367 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.133504 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.133634 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.133759 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.133883 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.134005 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.134127 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.134257 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.134378 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.134498 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.134618 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.134738 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.134858 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.134978 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.135098 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.135220 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.135339 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.135466 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.135591 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.135712 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.135830 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.135950 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.136068 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.136190 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.138263 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.138433 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.138602 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.138749 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.138887 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.139022 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.139154 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.139284 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.139429 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.139560 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.139691 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.139825 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.139953 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.140080 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.140206 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.140377 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.140507 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.140635 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.140762 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.141214 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.141372 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.141508 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.141638 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.141766 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.141892 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.142018 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.142144 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.142269 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.142393 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.142525 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.142651 (Thread-3): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.157827 (Thread-3): Writing injected SQL for node "model.airbyte_utils.ticket_fields_scd" 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.158218 (Thread-3): finished collecting timing info 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.174031 (Thread-3): Using redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.174209 (Thread-3): On model.airbyte_utils.ticket_fields_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_fields_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_fields_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_fields_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.182197 (Thread-4): SQL status: SELECT in 0.49 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.185523 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.185715 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.185855 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.185994 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.186123 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.186250 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.186374 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.186498 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.186620 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.186742 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.186862 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.186990 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.187113 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.187234 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.187361 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.187481 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.187602 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.187723 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.187845 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.187968 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.188087 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.188206 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.188362 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.188491 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.188612 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.188737 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.188857 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.188979 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.189100 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.189220 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.189340 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.189488 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.189624 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.189755 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.189885 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.190014 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.190149 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.190277 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.190411 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.190539 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.190665 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.190799 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.190928 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.191055 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.191183 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.191311 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.191444 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.191573 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.191700 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.191828 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.191958 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.192087 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.192215 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.208539 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.208710 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.208857 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.209319 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.209464 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.209600 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.209739 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.209867 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.209994 (Thread-4): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.217052 (Thread-4): Writing injected SQL for node "model.airbyte_utils.ticket_metrics_scd" 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.217422 (Thread-4): finished collecting timing info 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.236603 (Thread-4): Using redshift connection "model.airbyte_utils.ticket_metrics_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.236948 (Thread-2): SQL status: SELECT in 0.37 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.245053 (Thread-2): 2022-04-19 13:15:47 normalization > In "datalake"."zendesk"."ticket_metric_events_scd": 2022-04-19 13:15:47 normalization > Schema changed: False 2022-04-19 13:15:47 normalization > Source columns not in target: [] 2022-04-19 13:15:47 normalization > Target columns not in source: [] 2022-04-19 13:15:47 normalization > New column types: [] 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.237142 (Thread-4): On model.airbyte_utils.ticket_metrics_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metrics_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metrics_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metrics_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metrics_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.261820 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.262218 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_scd"} */ 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > with bound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > table_schema, 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from information_schema."columns" 2022-04-19 13:15:47 normalization > where table_name = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unbound_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > ordinal_position, 2022-04-19 13:15:47 normalization > view_schema, 2022-04-19 13:15:47 normalization > col_name, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:47 normalization > 'character varying' 2022-04-19 13:15:47 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else col_type 2022-04-19 13:15:47 normalization > end as col_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'character%' 2022-04-19 13:15:47 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when col_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:47 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:47 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:47 normalization > where view_name = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > external_views as ( 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > columnnum, 2022-04-19 13:15:47 normalization > schemaname, 2022-04-19 13:15:47 normalization > columnname, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:47 normalization > then 'character varying' 2022-04-19 13:15:47 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:47 normalization > else external_type 2022-04-19 13:15:47 normalization > end as external_type, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as character_maximum_length, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_precision, 2022-04-19 13:15:47 normalization > case 2022-04-19 13:15:47 normalization > when external_type like 'numeric%' 2022-04-19 13:15:47 normalization > then nullif( 2022-04-19 13:15:47 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:47 normalization > '')::int 2022-04-19 13:15:47 normalization > else null 2022-04-19 13:15:47 normalization > end as numeric_scale 2022-04-19 13:15:47 normalization > from 2022-04-19 13:15:47 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:47 normalization > where 2022-04-19 13:15:47 normalization > schemaname = 'zendesk' 2022-04-19 13:15:47 normalization > and tablename = 'ticket_metric_events_scd' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > ), 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > unioned as ( 2022-04-19 13:15:47 normalization > select * from bound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from unbound_views 2022-04-19 13:15:47 normalization > union all 2022-04-19 13:15:47 normalization > select * from external_views 2022-04-19 13:15:47 normalization > ) 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > select 2022-04-19 13:15:47 normalization > column_name, 2022-04-19 13:15:47 normalization > data_type, 2022-04-19 13:15:47 normalization > character_maximum_length, 2022-04-19 13:15:47 normalization > numeric_precision, 2022-04-19 13:15:47 normalization > numeric_scale 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > from unioned 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > order by ordinal_position 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.327628 (Thread-1): SQL status: SELECT in 0.35 seconds 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.332882 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.334090 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.334523 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.334725 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.335087 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.335279 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.335686 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.336053 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.336248 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.336679 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.336884 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.337291 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.338149 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.338298 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.339227 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.339368 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.339505 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.339636 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.339760 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.339883 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.340004 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.340123 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.340245 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.340397 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.340520 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.343479 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:47 normalization > 2022-04-19 13:15:16.343635 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.343862 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.344000 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.344133 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.344282 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.348715 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.348866 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.349068 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.349218 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.349362 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.349493 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.349621 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.349751 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.349880 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.350041 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.350191 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.350327 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.350464 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.350597 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.350731 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.350875 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.351010 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.351144 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.351285 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.351421 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.351561 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.351718 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.351859 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.351993 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.352127 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.359454 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.359676 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.359843 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.359993 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.360137 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.360305 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.360526 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.360667 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.360805 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.361297 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.361438 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.361574 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.361706 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.361836 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.361969 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.362099 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.362228 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.368485 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.369487 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.369884 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.370664 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.371420 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.372178 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.373000 (Thread-1): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.385897 (Thread-1): Writing injected SQL for node "model.airbyte_utils.tickets_scd" 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.386302 (Thread-1): finished collecting timing info 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.409276 (Thread-1): Using redshift connection "model.airbyte_utils.tickets_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.409515 (Thread-1): On model.airbyte_utils.tickets_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > with bound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > table_schema, 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from information_schema."columns" 2022-04-19 13:15:48 normalization > where table_name = 'tickets_scd' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unbound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > view_schema, 2022-04-19 13:15:48 normalization > col_name, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:48 normalization > 'character varying' 2022-04-19 13:15:48 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else col_type 2022-04-19 13:15:48 normalization > end as col_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'character%' 2022-04-19 13:15:48 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:48 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:48 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:48 normalization > where view_name = 'tickets_scd' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > external_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > columnnum, 2022-04-19 13:15:48 normalization > schemaname, 2022-04-19 13:15:48 normalization > columnname, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:48 normalization > then 'character varying' 2022-04-19 13:15:48 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else external_type 2022-04-19 13:15:48 normalization > end as external_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > from 2022-04-19 13:15:48 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:48 normalization > where 2022-04-19 13:15:48 normalization > schemaname = 'zendesk' 2022-04-19 13:15:48 normalization > and tablename = 'tickets_scd' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unioned as ( 2022-04-19 13:15:48 normalization > select * from bound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from unbound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from external_views 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from unioned 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > order by ordinal_position 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.522135 (Thread-3): SQL status: SELECT in 0.35 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.528429 (Thread-3): Using redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.528632 (Thread-3): On model.airbyte_utils.ticket_fields_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > create temporary table 2022-04-19 13:15:48 normalization > "ticket_fields_scd__dbt_tmp131516170906" 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > compound sortkey(_airbyte_active_row,_airbyte_unique_key_scd,_airbyte_emitted_at) 2022-04-19 13:15:48 normalization > as ( 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > -- depends_on: ref('ticket_fields_stg') 2022-04-19 13:15:48 normalization > with 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > new_data as ( 2022-04-19 13:15:48 normalization > -- retrieve incremental "new" data 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > * 2022-04-19 13:15:48 normalization > from "datalake"._airbyte_zendesk."ticket_fields_stg" 2022-04-19 13:15:48 normalization > -- ticket_fields from "datalake".zendesk._airbyte_raw_ticket_fields 2022-04-19 13:15:48 normalization > where 1 = 1 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > and coalesce( 2022-04-19 13:15:48 normalization > cast(_airbyte_emitted_at as 2022-04-19 13:15:48 normalization > timestamp with time zone 2022-04-19 13:15:48 normalization > ) >= (select max(cast(_airbyte_emitted_at as 2022-04-19 13:15:48 normalization > timestamp with time zone 2022-04-19 13:15:48 normalization > )) from "datalake".zendesk."ticket_fields_scd"), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > true) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > new_data_ids as ( 2022-04-19 13:15:48 normalization > -- build a subset of _airbyte_unique_key from rows that are new 2022-04-19 13:15:48 normalization > select distinct 2022-04-19 13:15:48 normalization > md5(cast(coalesce(cast(id as varchar), '') as varchar)) as _airbyte_unique_key 2022-04-19 13:15:48 normalization > from new_data 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > empty_new_data as ( 2022-04-19 13:15:48 normalization > -- build an empty table to only keep the table's column types 2022-04-19 13:15:48 normalization > select * from new_data where 1 = 0 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > previous_active_scd_data as ( 2022-04-19 13:15:48 normalization > -- retrieve "incomplete old" data that needs to be updated with an end date because of new changes 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > this_data."_airbyte_ticket_fields_hashid", 2022-04-19 13:15:48 normalization > this_data."id", 2022-04-19 13:15:48 normalization > this_data."tag", 2022-04-19 13:15:48 normalization > this_data."url", 2022-04-19 13:15:48 normalization > this_data."type", 2022-04-19 13:15:48 normalization > this_data."title", 2022-04-19 13:15:48 normalization > this_data."active", 2022-04-19 13:15:48 normalization > this_data."position", 2022-04-19 13:15:48 normalization > this_data."required", 2022-04-19 13:15:48 normalization > this_data."raw_title", 2022-04-19 13:15:48 normalization > this_data."removable", 2022-04-19 13:15:48 normalization > this_data."created_at", 2022-04-19 13:15:48 normalization > this_data."updated_at", 2022-04-19 13:15:48 normalization > this_data."description", 2022-04-19 13:15:48 normalization > this_data."sub_type_id", 2022-04-19 13:15:48 normalization > this_data."raw_description", 2022-04-19 13:15:48 normalization > this_data."title_in_portal", 2022-04-19 13:15:48 normalization > this_data."agent_description", 2022-04-19 13:15:48 normalization > this_data."visible_in_portal", 2022-04-19 13:15:48 normalization > this_data."editable_in_portal", 2022-04-19 13:15:48 normalization > this_data."required_in_portal", 2022-04-19 13:15:48 normalization > this_data."raw_title_in_portal", 2022-04-19 13:15:48 normalization > this_data."collapsed_for_agents", 2022-04-19 13:15:48 normalization > this_data."custom_field_options", 2022-04-19 13:15:48 normalization > this_data."system_field_options", 2022-04-19 13:15:48 normalization > this_data."regexp_for_validation", 2022-04-19 13:15:48 normalization > this_data."_airbyte_ab_id", 2022-04-19 13:15:48 normalization > this_data."_airbyte_emitted_at", 2022-04-19 13:15:48 normalization > this_data."_airbyte_normalized_at" 2022-04-19 13:15:48 normalization > from "datalake".zendesk."ticket_fields_scd" as this_data 2022-04-19 13:15:48 normalization > -- make a join with new_data using primary key to filter active data that need to be updated only 2022-04-19 13:15:48 normalization > join new_data_ids on this_data._airbyte_unique_key = new_data_ids._airbyte_unique_key 2022-04-19 13:15:48 normalization > -- force left join to NULL values (we just need to transfer column types only for the star_intersect macro on schema changes) 2022-04-19 13:15:48 normalization > left join empty_new_data as inc_data on this_data._airbyte_ab_id = inc_data._airbyte_ab_id 2022-04-19 13:15:48 normalization > where _airbyte_active_row = 1 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > input_data as ( 2022-04-19 13:15:48 normalization > select "_airbyte_ticket_fields_hashid", 2022-04-19 13:15:48 normalization > "id", 2022-04-19 13:15:48 normalization > "tag", 2022-04-19 13:15:48 normalization > "url", 2022-04-19 13:15:48 normalization > "type", 2022-04-19 13:15:48 normalization > "title", 2022-04-19 13:15:48 normalization > "active", 2022-04-19 13:15:48 normalization > "position", 2022-04-19 13:15:48 normalization > "required", 2022-04-19 13:15:48 normalization > "raw_title", 2022-04-19 13:15:48 normalization > "removable", 2022-04-19 13:15:48 normalization > "created_at", 2022-04-19 13:15:48 normalization > "updated_at", 2022-04-19 13:15:48 normalization > "description", 2022-04-19 13:15:48 normalization > "sub_type_id", 2022-04-19 13:15:48 normalization > "raw_description", 2022-04-19 13:15:48 normalization > "title_in_portal", 2022-04-19 13:15:48 normalization > "agent_description", 2022-04-19 13:15:48 normalization > "visible_in_portal", 2022-04-19 13:15:48 normalization > "editable_in_portal", 2022-04-19 13:15:48 normalization > "required_in_portal", 2022-04-19 13:15:48 normalization > "raw_title_in_portal", 2022-04-19 13:15:48 normalization > "collapsed_for_agents", 2022-04-19 13:15:48 normalization > "custom_field_options", 2022-04-19 13:15:48 normalization > "system_field_options", 2022-04-19 13:15:48 normalization > "regexp_for_validation", 2022-04-19 13:15:48 normalization > "_airbyte_ab_id", 2022-04-19 13:15:48 normalization > "_airbyte_emitted_at", 2022-04-19 13:15:48 normalization > "_airbyte_normalized_at" from new_data 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select "_airbyte_ticket_fields_hashid", 2022-04-19 13:15:48 normalization > "id", 2022-04-19 13:15:48 normalization > "tag", 2022-04-19 13:15:48 normalization > "url", 2022-04-19 13:15:48 normalization > "type", 2022-04-19 13:15:48 normalization > "title", 2022-04-19 13:15:48 normalization > "active", 2022-04-19 13:15:48 normalization > "position", 2022-04-19 13:15:48 normalization > "required", 2022-04-19 13:15:48 normalization > "raw_title", 2022-04-19 13:15:48 normalization > "removable", 2022-04-19 13:15:48 normalization > "created_at", 2022-04-19 13:15:48 normalization > "updated_at", 2022-04-19 13:15:48 normalization > "description", 2022-04-19 13:15:48 normalization > "sub_type_id", 2022-04-19 13:15:48 normalization > "raw_description", 2022-04-19 13:15:48 normalization > "title_in_portal", 2022-04-19 13:15:48 normalization > "agent_description", 2022-04-19 13:15:48 normalization > "visible_in_portal", 2022-04-19 13:15:48 normalization > "editable_in_portal", 2022-04-19 13:15:48 normalization > "required_in_portal", 2022-04-19 13:15:48 normalization > "raw_title_in_portal", 2022-04-19 13:15:48 normalization > "collapsed_for_agents", 2022-04-19 13:15:48 normalization > "custom_field_options", 2022-04-19 13:15:48 normalization > "system_field_options", 2022-04-19 13:15:48 normalization > "regexp_for_validation", 2022-04-19 13:15:48 normalization > "_airbyte_ab_id", 2022-04-19 13:15:48 normalization > "_airbyte_emitted_at", 2022-04-19 13:15:48 normalization > "_airbyte_normalized_at" from previous_active_scd_data 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > scd_data as ( 2022-04-19 13:15:48 normalization > -- SQL model to build a Type 2 Slowly Changing Dimension (SCD) table for each record identified by their primary key 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > md5(cast(coalesce(cast(id as varchar), '') as varchar)) as _airbyte_unique_key, 2022-04-19 13:15:48 normalization > id, 2022-04-19 13:15:48 normalization > "tag", 2022-04-19 13:15:48 normalization > url, 2022-04-19 13:15:48 normalization > type, 2022-04-19 13:15:48 normalization > title, 2022-04-19 13:15:48 normalization > active, 2022-04-19 13:15:48 normalization > position, 2022-04-19 13:15:48 normalization > required, 2022-04-19 13:15:48 normalization > raw_title, 2022-04-19 13:15:48 normalization > removable, 2022-04-19 13:15:48 normalization > created_at, 2022-04-19 13:15:48 normalization > updated_at, 2022-04-19 13:15:48 normalization > description, 2022-04-19 13:15:48 normalization > sub_type_id, 2022-04-19 13:15:48 normalization > raw_description, 2022-04-19 13:15:48 normalization > title_in_portal, 2022-04-19 13:15:48 normalization > agent_description, 2022-04-19 13:15:48 normalization > visible_in_portal, 2022-04-19 13:15:48 normalization > editable_in_portal, 2022-04-19 13:15:48 normalization > required_in_portal, 2022-04-19 13:15:48 normalization > raw_title_in_portal, 2022-04-19 13:15:48 normalization > collapsed_for_agents, 2022-04-19 13:15:48 normalization > custom_field_options, 2022-04-19 13:15:48 normalization > system_field_options, 2022-04-19 13:15:48 normalization > regexp_for_validation, 2022-04-19 13:15:48 normalization > updated_at as _airbyte_start_at, 2022-04-19 13:15:48 normalization > lag(updated_at) over ( 2022-04-19 13:15:48 normalization > partition by id 2022-04-19 13:15:48 normalization > order by 2022-04-19 13:15:48 normalization > updated_at is null asc, 2022-04-19 13:15:48 normalization > updated_at desc, 2022-04-19 13:15:48 normalization > _airbyte_emitted_at desc 2022-04-19 13:15:48 normalization > ) as _airbyte_end_at, 2022-04-19 13:15:48 normalization > case when row_number() over ( 2022-04-19 13:15:48 normalization > partition by id 2022-04-19 13:15:48 normalization > order by 2022-04-19 13:15:48 normalization > updated_at is null asc, 2022-04-19 13:15:48 normalization > updated_at desc, 2022-04-19 13:15:48 normalization > _airbyte_emitted_at desc 2022-04-19 13:15:48 normalization > ) = 1 then 1 else 0 end as _airbyte_active_row, 2022-04-19 13:15:48 normalization > _airbyte_ab_id, 2022-04-19 13:15:48 normalization > _airbyte_emitted_at, 2022-04-19 13:15:48 normalization > _airbyte_ticket_fields_hashid 2022-04-19 13:15:48 normalization > from input_data 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > dedup_data as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > -- we need to ensure de-duplicated rows for merge/update queries 2022-04-19 13:15:48 normalization > -- additionally, we generate a unique key for the scd table 2022-04-19 13:15:48 normalization > row_number() over ( 2022-04-19 13:15:48 normalization > partition by 2022-04-19 13:15:48 normalization > _airbyte_unique_key, 2022-04-19 13:15:48 normalization > _airbyte_start_at, 2022-04-19 13:15:48 normalization > _airbyte_emitted_at 2022-04-19 13:15:48 normalization > order by _airbyte_active_row desc, _airbyte_ab_id 2022-04-19 13:15:48 normalization > ) as _airbyte_row_num, 2022-04-19 13:15:48 normalization > md5(cast(coalesce(cast(_airbyte_unique_key as varchar), '') || '-' || coalesce(cast(_airbyte_start_at as varchar), '') || '-' || coalesce(cast(_airbyte_emitted_at as varchar), '') as varchar)) as _airbyte_unique_key_scd, 2022-04-19 13:15:48 normalization > scd_data.* 2022-04-19 13:15:48 normalization > from scd_data 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > _airbyte_unique_key, 2022-04-19 13:15:48 normalization > _airbyte_unique_key_scd, 2022-04-19 13:15:48 normalization > id, 2022-04-19 13:15:48 normalization > "tag", 2022-04-19 13:15:48 normalization > url, 2022-04-19 13:15:48 normalization > type, 2022-04-19 13:15:48 normalization > title, 2022-04-19 13:15:48 normalization > active, 2022-04-19 13:15:48 normalization > position, 2022-04-19 13:15:48 normalization > required, 2022-04-19 13:15:48 normalization > raw_title, 2022-04-19 13:15:48 normalization > removable, 2022-04-19 13:15:48 normalization > created_at, 2022-04-19 13:15:48 normalization > updated_at, 2022-04-19 13:15:48 normalization > description, 2022-04-19 13:15:48 normalization > sub_type_id, 2022-04-19 13:15:48 normalization > raw_description, 2022-04-19 13:15:48 normalization > title_in_portal, 2022-04-19 13:15:48 normalization > agent_description, 2022-04-19 13:15:48 normalization > visible_in_portal, 2022-04-19 13:15:48 normalization > editable_in_portal, 2022-04-19 13:15:48 normalization > required_in_portal, 2022-04-19 13:15:48 normalization > raw_title_in_portal, 2022-04-19 13:15:48 normalization > collapsed_for_agents, 2022-04-19 13:15:48 normalization > custom_field_options, 2022-04-19 13:15:48 normalization > system_field_options, 2022-04-19 13:15:48 normalization > regexp_for_validation, 2022-04-19 13:15:48 normalization > _airbyte_start_at, 2022-04-19 13:15:48 normalization > _airbyte_end_at, 2022-04-19 13:15:48 normalization > _airbyte_active_row, 2022-04-19 13:15:48 normalization > _airbyte_ab_id, 2022-04-19 13:15:48 normalization > _airbyte_emitted_at, 2022-04-19 13:15:48 normalization > getdate() as _airbyte_normalized_at, 2022-04-19 13:15:48 normalization > _airbyte_ticket_fields_hashid 2022-04-19 13:15:48 normalization > from dedup_data where _airbyte_row_num = 1 2022-04-19 13:15:48 normalization > ); 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.663998 (Thread-4): SQL status: SELECT in 0.40 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.670506 (Thread-4): Using redshift connection "model.airbyte_utils.ticket_metrics_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.672835 (Thread-4): On model.airbyte_utils.ticket_metrics_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metrics_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > create temporary table 2022-04-19 13:15:48 normalization > "ticket_metrics_scd__dbt_tmp131516226018" 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > compound sortkey(_airbyte_active_row,_airbyte_unique_key_scd,_airbyte_emitted_at) 2022-04-19 13:15:48 normalization > as ( 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > -- depends_on: ref('ticket_metrics_stg') 2022-04-19 13:15:48 normalization > with 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > new_data as ( 2022-04-19 13:15:48 normalization > -- retrieve incremental "new" data 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > * 2022-04-19 13:15:48 normalization > from "datalake"._airbyte_zendesk."ticket_metrics_stg" 2022-04-19 13:15:48 normalization > -- ticket_metrics from "datalake".zendesk._airbyte_raw_ticket_metrics 2022-04-19 13:15:48 normalization > where 1 = 1 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > and coalesce( 2022-04-19 13:15:48 normalization > cast(_airbyte_emitted_at as 2022-04-19 13:15:48 normalization > timestamp with time zone 2022-04-19 13:15:48 normalization > ) >= (select max(cast(_airbyte_emitted_at as 2022-04-19 13:15:48 normalization > timestamp with time zone 2022-04-19 13:15:48 normalization > )) from "datalake".zendesk."ticket_metrics_scd"), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > true) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > new_data_ids as ( 2022-04-19 13:15:48 normalization > -- build a subset of _airbyte_unique_key from rows that are new 2022-04-19 13:15:48 normalization > select distinct 2022-04-19 13:15:48 normalization > md5(cast(coalesce(cast(id as varchar), '') as varchar)) as _airbyte_unique_key 2022-04-19 13:15:48 normalization > from new_data 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > empty_new_data as ( 2022-04-19 13:15:48 normalization > -- build an empty table to only keep the table's column types 2022-04-19 13:15:48 normalization > select * from new_data where 1 = 0 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > previous_active_scd_data as ( 2022-04-19 13:15:48 normalization > -- retrieve "incomplete old" data that needs to be updated with an end date because of new changes 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > this_data."_airbyte_ticket_metrics_hashid", 2022-04-19 13:15:48 normalization > this_data."id", 2022-04-19 13:15:48 normalization > this_data."url", 2022-04-19 13:15:48 normalization > this_data."time", 2022-04-19 13:15:48 normalization > this_data."type", 2022-04-19 13:15:48 normalization > this_data."metric", 2022-04-19 13:15:48 normalization > this_data."status", 2022-04-19 13:15:48 normalization > this_data."reopens", 2022-04-19 13:15:48 normalization > this_data."replies", 2022-04-19 13:15:48 normalization > this_data."solved_at", 2022-04-19 13:15:48 normalization > this_data."ticket_id", 2022-04-19 13:15:48 normalization > this_data."created_at", 2022-04-19 13:15:48 normalization > this_data."updated_at", 2022-04-19 13:15:48 normalization > this_data."assigned_at", 2022-04-19 13:15:48 normalization > this_data."instance_id", 2022-04-19 13:15:48 normalization > this_data."group_stations", 2022-04-19 13:15:48 normalization > this_data."assignee_stations", 2022-04-19 13:15:48 normalization > this_data."status_updated_at", 2022-04-19 13:15:48 normalization > this_data."assignee_updated_at", 2022-04-19 13:15:48 normalization > this_data."requester_updated_at", 2022-04-19 13:15:48 normalization > this_data."initially_assigned_at", 2022-04-19 13:15:48 normalization > this_data."reply_time_in_minutes", 2022-04-19 13:15:48 normalization > this_data."latest_comment_added_at", 2022-04-19 13:15:48 normalization > this_data."on_hold_time_in_minutes", 2022-04-19 13:15:48 normalization > this_data."agent_wait_time_in_minutes", 2022-04-19 13:15:48 normalization > this_data."requester_wait_time_in_minutes", 2022-04-19 13:15:48 normalization > this_data."full_resolution_time_in_minutes", 2022-04-19 13:15:48 normalization > this_data."first_resolution_time_in_minutes", 2022-04-19 13:15:48 normalization > this_data."_airbyte_ab_id", 2022-04-19 13:15:48 normalization > this_data."_airbyte_emitted_at", 2022-04-19 13:15:48 normalization > this_data."_airbyte_normalized_at" 2022-04-19 13:15:48 normalization > from "datalake".zendesk."ticket_metrics_scd" as this_data 2022-04-19 13:15:48 normalization > -- make a join with new_data using primary key to filter active data that need to be updated only 2022-04-19 13:15:48 normalization > join new_data_ids on this_data._airbyte_unique_key = new_data_ids._airbyte_unique_key 2022-04-19 13:15:48 normalization > -- force left join to NULL values (we just need to transfer column types only for the star_intersect macro on schema changes) 2022-04-19 13:15:48 normalization > left join empty_new_data as inc_data on this_data._airbyte_ab_id = inc_data._airbyte_ab_id 2022-04-19 13:15:48 normalization > where _airbyte_active_row = 1 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > input_data as ( 2022-04-19 13:15:48 normalization > select "_airbyte_ticket_metrics_hashid", 2022-04-19 13:15:48 normalization > "id", 2022-04-19 13:15:48 normalization > "url", 2022-04-19 13:15:48 normalization > "time", 2022-04-19 13:15:48 normalization > "type", 2022-04-19 13:15:48 normalization > "metric", 2022-04-19 13:15:48 normalization > "status", 2022-04-19 13:15:48 normalization > "reopens", 2022-04-19 13:15:48 normalization > "replies", 2022-04-19 13:15:48 normalization > "solved_at", 2022-04-19 13:15:48 normalization > "ticket_id", 2022-04-19 13:15:48 normalization > "created_at", 2022-04-19 13:15:48 normalization > "updated_at", 2022-04-19 13:15:48 normalization > "assigned_at", 2022-04-19 13:15:48 normalization > "instance_id", 2022-04-19 13:15:48 normalization > "group_stations", 2022-04-19 13:15:48 normalization > "assignee_stations", 2022-04-19 13:15:48 normalization > "status_updated_at", 2022-04-19 13:15:48 normalization > "assignee_updated_at", 2022-04-19 13:15:48 normalization > "requester_updated_at", 2022-04-19 13:15:48 normalization > "initially_assigned_at", 2022-04-19 13:15:48 normalization > "reply_time_in_minutes", 2022-04-19 13:15:48 normalization > "latest_comment_added_at", 2022-04-19 13:15:48 normalization > "on_hold_time_in_minutes", 2022-04-19 13:15:48 normalization > "agent_wait_time_in_minutes", 2022-04-19 13:15:48 normalization > "requester_wait_time_in_minutes", 2022-04-19 13:15:48 normalization > "full_resolution_time_in_minutes", 2022-04-19 13:15:48 normalization > "first_resolution_time_in_minutes", 2022-04-19 13:15:48 normalization > "_airbyte_ab_id", 2022-04-19 13:15:48 normalization > "_airbyte_emitted_at", 2022-04-19 13:15:48 normalization > "_airbyte_normalized_at" from new_data 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select "_airbyte_ticket_metrics_hashid", 2022-04-19 13:15:48 normalization > "id", 2022-04-19 13:15:48 normalization > "url", 2022-04-19 13:15:48 normalization > "time", 2022-04-19 13:15:48 normalization > "type", 2022-04-19 13:15:48 normalization > "metric", 2022-04-19 13:15:48 normalization > "status", 2022-04-19 13:15:48 normalization > "reopens", 2022-04-19 13:15:48 normalization > "replies", 2022-04-19 13:15:48 normalization > "solved_at", 2022-04-19 13:15:48 normalization > "ticket_id", 2022-04-19 13:15:48 normalization > "created_at", 2022-04-19 13:15:48 normalization > "updated_at", 2022-04-19 13:15:48 normalization > "assigned_at", 2022-04-19 13:15:48 normalization > "instance_id", 2022-04-19 13:15:48 normalization > "group_stations", 2022-04-19 13:15:48 normalization > "assignee_stations", 2022-04-19 13:15:48 normalization > "status_updated_at", 2022-04-19 13:15:48 normalization > "assignee_updated_at", 2022-04-19 13:15:48 normalization > "requester_updated_at", 2022-04-19 13:15:48 normalization > "initially_assigned_at", 2022-04-19 13:15:48 normalization > "reply_time_in_minutes", 2022-04-19 13:15:48 normalization > "latest_comment_added_at", 2022-04-19 13:15:48 normalization > "on_hold_time_in_minutes", 2022-04-19 13:15:48 normalization > "agent_wait_time_in_minutes", 2022-04-19 13:15:48 normalization > "requester_wait_time_in_minutes", 2022-04-19 13:15:48 normalization > "full_resolution_time_in_minutes", 2022-04-19 13:15:48 normalization > "first_resolution_time_in_minutes", 2022-04-19 13:15:48 normalization > "_airbyte_ab_id", 2022-04-19 13:15:48 normalization > "_airbyte_emitted_at", 2022-04-19 13:15:48 normalization > "_airbyte_normalized_at" from previous_active_scd_data 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > scd_data as ( 2022-04-19 13:15:48 normalization > -- SQL model to build a Type 2 Slowly Changing Dimension (SCD) table for each record identified by their primary key 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > md5(cast(coalesce(cast(id as varchar), '') as varchar)) as _airbyte_unique_key, 2022-04-19 13:15:48 normalization > id, 2022-04-19 13:15:48 normalization > url, 2022-04-19 13:15:48 normalization > "time", 2022-04-19 13:15:48 normalization > type, 2022-04-19 13:15:48 normalization > metric, 2022-04-19 13:15:48 normalization > status, 2022-04-19 13:15:48 normalization > reopens, 2022-04-19 13:15:48 normalization > replies, 2022-04-19 13:15:48 normalization > solved_at, 2022-04-19 13:15:48 normalization > ticket_id, 2022-04-19 13:15:48 normalization > created_at, 2022-04-19 13:15:48 normalization > updated_at, 2022-04-19 13:15:48 normalization > assigned_at, 2022-04-19 13:15:48 normalization > instance_id, 2022-04-19 13:15:48 normalization > group_stations, 2022-04-19 13:15:48 normalization > assignee_stations, 2022-04-19 13:15:48 normalization > status_updated_at, 2022-04-19 13:15:48 normalization > assignee_updated_at, 2022-04-19 13:15:48 normalization > requester_updated_at, 2022-04-19 13:15:48 normalization > initially_assigned_at, 2022-04-19 13:15:48 normalization > reply_time_in_minutes, 2022-04-19 13:15:48 normalization > latest_comment_added_at, 2022-04-19 13:15:48 normalization > on_hold_time_in_minutes, 2022-04-19 13:15:48 normalization > agent_wait_time_in_minutes, 2022-04-19 13:15:48 normalization > requester_wait_time_in_minutes, 2022-04-19 13:15:48 normalization > full_resolution_time_in_minutes, 2022-04-19 13:15:48 normalization > first_resolution_time_in_minutes, 2022-04-19 13:15:48 normalization > updated_at as _airbyte_start_at, 2022-04-19 13:15:48 normalization > lag(updated_at) over ( 2022-04-19 13:15:48 normalization > partition by id 2022-04-19 13:15:48 normalization > order by 2022-04-19 13:15:48 normalization > updated_at is null asc, 2022-04-19 13:15:48 normalization > updated_at desc, 2022-04-19 13:15:48 normalization > _airbyte_emitted_at desc 2022-04-19 13:15:48 normalization > ) as _airbyte_end_at, 2022-04-19 13:15:48 normalization > case when row_number() over ( 2022-04-19 13:15:48 normalization > partition by id 2022-04-19 13:15:48 normalization > order by 2022-04-19 13:15:48 normalization > updated_at is null asc, 2022-04-19 13:15:48 normalization > updated_at desc, 2022-04-19 13:15:48 normalization > _airbyte_emitted_at desc 2022-04-19 13:15:48 normalization > ) = 1 then 1 else 0 end as _airbyte_active_row, 2022-04-19 13:15:48 normalization > _airbyte_ab_id, 2022-04-19 13:15:48 normalization > _airbyte_emitted_at, 2022-04-19 13:15:48 normalization > _airbyte_ticket_metrics_hashid 2022-04-19 13:15:48 normalization > from input_data 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > dedup_data as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > -- we need to ensure de-duplicated rows for merge/update queries 2022-04-19 13:15:48 normalization > -- additionally, we generate a unique key for the scd table 2022-04-19 13:15:48 normalization > row_number() over ( 2022-04-19 13:15:48 normalization > partition by 2022-04-19 13:15:48 normalization > _airbyte_unique_key, 2022-04-19 13:15:48 normalization > _airbyte_start_at, 2022-04-19 13:15:48 normalization > _airbyte_emitted_at 2022-04-19 13:15:48 normalization > order by _airbyte_active_row desc, _airbyte_ab_id 2022-04-19 13:15:48 normalization > ) as _airbyte_row_num, 2022-04-19 13:15:48 normalization > md5(cast(coalesce(cast(_airbyte_unique_key as varchar), '') || '-' || coalesce(cast(_airbyte_start_at as varchar), '') || '-' || coalesce(cast(_airbyte_emitted_at as varchar), '') as varchar)) as _airbyte_unique_key_scd, 2022-04-19 13:15:48 normalization > scd_data.* 2022-04-19 13:15:48 normalization > from scd_data 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > _airbyte_unique_key, 2022-04-19 13:15:48 normalization > _airbyte_unique_key_scd, 2022-04-19 13:15:48 normalization > id, 2022-04-19 13:15:48 normalization > url, 2022-04-19 13:15:48 normalization > "time", 2022-04-19 13:15:48 normalization > type, 2022-04-19 13:15:48 normalization > metric, 2022-04-19 13:15:48 normalization > status, 2022-04-19 13:15:48 normalization > reopens, 2022-04-19 13:15:48 normalization > replies, 2022-04-19 13:15:48 normalization > solved_at, 2022-04-19 13:15:48 normalization > ticket_id, 2022-04-19 13:15:48 normalization > created_at, 2022-04-19 13:15:48 normalization > updated_at, 2022-04-19 13:15:48 normalization > assigned_at, 2022-04-19 13:15:48 normalization > instance_id, 2022-04-19 13:15:48 normalization > group_stations, 2022-04-19 13:15:48 normalization > assignee_stations, 2022-04-19 13:15:48 normalization > status_updated_at, 2022-04-19 13:15:48 normalization > assignee_updated_at, 2022-04-19 13:15:48 normalization > requester_updated_at, 2022-04-19 13:15:48 normalization > initially_assigned_at, 2022-04-19 13:15:48 normalization > reply_time_in_minutes, 2022-04-19 13:15:48 normalization > latest_comment_added_at, 2022-04-19 13:15:48 normalization > on_hold_time_in_minutes, 2022-04-19 13:15:48 normalization > agent_wait_time_in_minutes, 2022-04-19 13:15:48 normalization > requester_wait_time_in_minutes, 2022-04-19 13:15:48 normalization > full_resolution_time_in_minutes, 2022-04-19 13:15:48 normalization > first_resolution_time_in_minutes, 2022-04-19 13:15:48 normalization > _airbyte_start_at, 2022-04-19 13:15:48 normalization > _airbyte_end_at, 2022-04-19 13:15:48 normalization > _airbyte_active_row, 2022-04-19 13:15:48 normalization > _airbyte_ab_id, 2022-04-19 13:15:48 normalization > _airbyte_emitted_at, 2022-04-19 13:15:48 normalization > getdate() as _airbyte_normalized_at, 2022-04-19 13:15:48 normalization > _airbyte_ticket_metrics_hashid 2022-04-19 13:15:48 normalization > from dedup_data where _airbyte_row_num = 1 2022-04-19 13:15:48 normalization > ); 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.710930 (Thread-2): SQL status: SELECT in 0.45 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.714093 (Thread-2): Writing runtime SQL for node "model.airbyte_utils.ticket_metric_events_scd" 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.714586 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.714728 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > delete 2022-04-19 13:15:48 normalization > from "datalake".zendesk."ticket_metric_events_scd" 2022-04-19 13:15:48 normalization > where (_airbyte_unique_key_scd) in ( 2022-04-19 13:15:48 normalization > select (_airbyte_unique_key_scd) 2022-04-19 13:15:48 normalization > from "ticket_metric_events_scd__dbt_tmp131512877080" 2022-04-19 13:15:48 normalization > ); 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > insert into "datalake".zendesk."ticket_metric_events_scd" ("_airbyte_unique_key", "_airbyte_unique_key_scd", "id", "time", "type", "metric", "ticket_id", "instance_id", "_airbyte_start_at", "_airbyte_end_at", "_airbyte_active_row", "_airbyte_ab_id", "_airbyte_emitted_at", "_airbyte_normalized_at", "_airbyte_ticket_metric_events_hashid") 2022-04-19 13:15:48 normalization > ( 2022-04-19 13:15:48 normalization > select "_airbyte_unique_key", "_airbyte_unique_key_scd", "id", "time", "type", "metric", "ticket_id", "instance_id", "_airbyte_start_at", "_airbyte_end_at", "_airbyte_active_row", "_airbyte_ab_id", "_airbyte_emitted_at", "_airbyte_normalized_at", "_airbyte_ticket_metric_events_hashid" 2022-04-19 13:15:48 normalization > from "ticket_metric_events_scd__dbt_tmp131512877080" 2022-04-19 13:15:48 normalization > ); 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.889918 (Thread-1): SQL status: SELECT in 0.48 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.897950 (Thread-1): Using redshift connection "model.airbyte_utils.tickets_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:16.898410 (Thread-1): On model.airbyte_utils.tickets_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > create temporary table 2022-04-19 13:15:48 normalization > "tickets_scd__dbt_tmp131516397949" 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > compound sortkey(_airbyte_active_row,_airbyte_unique_key_scd,_airbyte_emitted_at) 2022-04-19 13:15:48 normalization > as ( 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > -- depends_on: ref('tickets_stg') 2022-04-19 13:15:48 normalization > with 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > new_data as ( 2022-04-19 13:15:48 normalization > -- retrieve incremental "new" data 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > * 2022-04-19 13:15:48 normalization > from "datalake"._airbyte_zendesk."tickets_stg" 2022-04-19 13:15:48 normalization > -- tickets from "datalake".zendesk._airbyte_raw_tickets 2022-04-19 13:15:48 normalization > where 1 = 1 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > and coalesce( 2022-04-19 13:15:48 normalization > cast(_airbyte_emitted_at as 2022-04-19 13:15:48 normalization > timestamp with time zone 2022-04-19 13:15:48 normalization > ) >= (select max(cast(_airbyte_emitted_at as 2022-04-19 13:15:48 normalization > timestamp with time zone 2022-04-19 13:15:48 normalization > )) from "datalake".zendesk."tickets_scd"), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > true) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > new_data_ids as ( 2022-04-19 13:15:48 normalization > -- build a subset of _airbyte_unique_key from rows that are new 2022-04-19 13:15:48 normalization > select distinct 2022-04-19 13:15:48 normalization > md5(cast(coalesce(cast(id as varchar), '') as varchar)) as _airbyte_unique_key 2022-04-19 13:15:48 normalization > from new_data 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > empty_new_data as ( 2022-04-19 13:15:48 normalization > -- build an empty table to only keep the table's column types 2022-04-19 13:15:48 normalization > select * from new_data where 1 = 0 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > previous_active_scd_data as ( 2022-04-19 13:15:48 normalization > -- retrieve "incomplete old" data that needs to be updated with an end date because of new changes 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > this_data."_airbyte_tickets_hashid", 2022-04-19 13:15:48 normalization > this_data."id", 2022-04-19 13:15:48 normalization > this_data."url", 2022-04-19 13:15:48 normalization > this_data."via", 2022-04-19 13:15:48 normalization > this_data."tags", 2022-04-19 13:15:48 normalization > this_data."type", 2022-04-19 13:15:48 normalization > this_data."due_at", 2022-04-19 13:15:48 normalization > this_data."status", 2022-04-19 13:15:48 normalization > this_data."subject", 2022-04-19 13:15:48 normalization > this_data."brand_id", 2022-04-19 13:15:48 normalization > this_data."group_id", 2022-04-19 13:15:48 normalization > this_data."priority", 2022-04-19 13:15:48 normalization > this_data."is_public", 2022-04-19 13:15:48 normalization > this_data."recipient", 2022-04-19 13:15:48 normalization > this_data."created_at", 2022-04-19 13:15:48 normalization > this_data."problem_id", 2022-04-19 13:15:48 normalization > this_data."updated_at", 2022-04-19 13:15:48 normalization > this_data."assignee_id", 2022-04-19 13:15:48 normalization > this_data."description", 2022-04-19 13:15:48 normalization > this_data."external_id", 2022-04-19 13:15:48 normalization > this_data."raw_subject", 2022-04-19 13:15:48 normalization > this_data."email_cc_ids", 2022-04-19 13:15:48 normalization > this_data."follower_ids", 2022-04-19 13:15:48 normalization > this_data."followup_ids", 2022-04-19 13:15:48 normalization > this_data."requester_id", 2022-04-19 13:15:48 normalization > this_data."submitter_id", 2022-04-19 13:15:48 normalization > this_data."custom_fields", 2022-04-19 13:15:48 normalization > this_data."has_incidents", 2022-04-19 13:15:48 normalization > this_data."forum_topic_id", 2022-04-19 13:15:48 normalization > this_data."ticket_form_id", 2022-04-19 13:15:48 normalization > this_data."organization_id", 2022-04-19 13:15:48 normalization > this_data."collaborator_ids", 2022-04-19 13:15:48 normalization > this_data."allow_attachments", 2022-04-19 13:15:48 normalization > this_data."allow_channelback", 2022-04-19 13:15:48 normalization > this_data."generated_timestamp", 2022-04-19 13:15:48 normalization > this_data."satisfaction_rating", 2022-04-19 13:15:48 normalization > this_data."sharing_agreement_ids", 2022-04-19 13:15:48 normalization > this_data."_airbyte_ab_id", 2022-04-19 13:15:48 normalization > this_data."_airbyte_emitted_at", 2022-04-19 13:15:48 normalization > this_data."_airbyte_normalized_at" 2022-04-19 13:15:48 normalization > from "datalake".zendesk."tickets_scd" as this_data 2022-04-19 13:15:48 normalization > -- make a join with new_data using primary key to filter active data that need to be updated only 2022-04-19 13:15:48 normalization > join new_data_ids on this_data._airbyte_unique_key = new_data_ids._airbyte_unique_key 2022-04-19 13:15:48 normalization > -- force left join to NULL values (we just need to transfer column types only for the star_intersect macro on schema changes) 2022-04-19 13:15:48 normalization > left join empty_new_data as inc_data on this_data._airbyte_ab_id = inc_data._airbyte_ab_id 2022-04-19 13:15:48 normalization > where _airbyte_active_row = 1 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > input_data as ( 2022-04-19 13:15:48 normalization > select "_airbyte_tickets_hashid", 2022-04-19 13:15:48 normalization > "id", 2022-04-19 13:15:48 normalization > "url", 2022-04-19 13:15:48 normalization > "via", 2022-04-19 13:15:48 normalization > "tags", 2022-04-19 13:15:48 normalization > "type", 2022-04-19 13:15:48 normalization > "due_at", 2022-04-19 13:15:48 normalization > "status", 2022-04-19 13:15:48 normalization > "subject", 2022-04-19 13:15:48 normalization > "brand_id", 2022-04-19 13:15:48 normalization > "group_id", 2022-04-19 13:15:48 normalization > "priority", 2022-04-19 13:15:48 normalization > "is_public", 2022-04-19 13:15:48 normalization > "recipient", 2022-04-19 13:15:48 normalization > "created_at", 2022-04-19 13:15:48 normalization > "problem_id", 2022-04-19 13:15:48 normalization > "updated_at", 2022-04-19 13:15:48 normalization > "assignee_id", 2022-04-19 13:15:48 normalization > "description", 2022-04-19 13:15:48 normalization > "external_id", 2022-04-19 13:15:48 normalization > "raw_subject", 2022-04-19 13:15:48 normalization > "email_cc_ids", 2022-04-19 13:15:48 normalization > "follower_ids", 2022-04-19 13:15:48 normalization > "followup_ids", 2022-04-19 13:15:48 normalization > "requester_id", 2022-04-19 13:15:48 normalization > "submitter_id", 2022-04-19 13:15:48 normalization > "custom_fields", 2022-04-19 13:15:48 normalization > "has_incidents", 2022-04-19 13:15:48 normalization > "forum_topic_id", 2022-04-19 13:15:48 normalization > "ticket_form_id", 2022-04-19 13:15:48 normalization > "organization_id", 2022-04-19 13:15:48 normalization > "collaborator_ids", 2022-04-19 13:15:48 normalization > "allow_attachments", 2022-04-19 13:15:48 normalization > "allow_channelback", 2022-04-19 13:15:48 normalization > "generated_timestamp", 2022-04-19 13:15:48 normalization > "satisfaction_rating", 2022-04-19 13:15:48 normalization > "sharing_agreement_ids", 2022-04-19 13:15:48 normalization > "_airbyte_ab_id", 2022-04-19 13:15:48 normalization > "_airbyte_emitted_at", 2022-04-19 13:15:48 normalization > "_airbyte_normalized_at" from new_data 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select "_airbyte_tickets_hashid", 2022-04-19 13:15:48 normalization > "id", 2022-04-19 13:15:48 normalization > "url", 2022-04-19 13:15:48 normalization > "via", 2022-04-19 13:15:48 normalization > "tags", 2022-04-19 13:15:48 normalization > "type", 2022-04-19 13:15:48 normalization > "due_at", 2022-04-19 13:15:48 normalization > "status", 2022-04-19 13:15:48 normalization > "subject", 2022-04-19 13:15:48 normalization > "brand_id", 2022-04-19 13:15:48 normalization > "group_id", 2022-04-19 13:15:48 normalization > "priority", 2022-04-19 13:15:48 normalization > "is_public", 2022-04-19 13:15:48 normalization > "recipient", 2022-04-19 13:15:48 normalization > "created_at", 2022-04-19 13:15:48 normalization > "problem_id", 2022-04-19 13:15:48 normalization > "updated_at", 2022-04-19 13:15:48 normalization > "assignee_id", 2022-04-19 13:15:48 normalization > "description", 2022-04-19 13:15:48 normalization > "external_id", 2022-04-19 13:15:48 normalization > "raw_subject", 2022-04-19 13:15:48 normalization > "email_cc_ids", 2022-04-19 13:15:48 normalization > "follower_ids", 2022-04-19 13:15:48 normalization > "followup_ids", 2022-04-19 13:15:48 normalization > "requester_id", 2022-04-19 13:15:48 normalization > "submitter_id", 2022-04-19 13:15:48 normalization > "custom_fields", 2022-04-19 13:15:48 normalization > "has_incidents", 2022-04-19 13:15:48 normalization > "forum_topic_id", 2022-04-19 13:15:48 normalization > "ticket_form_id", 2022-04-19 13:15:48 normalization > "organization_id", 2022-04-19 13:15:48 normalization > "collaborator_ids", 2022-04-19 13:15:48 normalization > "allow_attachments", 2022-04-19 13:15:48 normalization > "allow_channelback", 2022-04-19 13:15:48 normalization > "generated_timestamp", 2022-04-19 13:15:48 normalization > "satisfaction_rating", 2022-04-19 13:15:48 normalization > "sharing_agreement_ids", 2022-04-19 13:15:48 normalization > "_airbyte_ab_id", 2022-04-19 13:15:48 normalization > "_airbyte_emitted_at", 2022-04-19 13:15:48 normalization > "_airbyte_normalized_at" from previous_active_scd_data 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > scd_data as ( 2022-04-19 13:15:48 normalization > -- SQL model to build a Type 2 Slowly Changing Dimension (SCD) table for each record identified by their primary key 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > md5(cast(coalesce(cast(id as varchar), '') as varchar)) as _airbyte_unique_key, 2022-04-19 13:15:48 normalization > id, 2022-04-19 13:15:48 normalization > url, 2022-04-19 13:15:48 normalization > via, 2022-04-19 13:15:48 normalization > tags, 2022-04-19 13:15:48 normalization > type, 2022-04-19 13:15:48 normalization > due_at, 2022-04-19 13:15:48 normalization > status, 2022-04-19 13:15:48 normalization > subject, 2022-04-19 13:15:48 normalization > brand_id, 2022-04-19 13:15:48 normalization > group_id, 2022-04-19 13:15:48 normalization > priority, 2022-04-19 13:15:48 normalization > is_public, 2022-04-19 13:15:48 normalization > recipient, 2022-04-19 13:15:48 normalization > created_at, 2022-04-19 13:15:48 normalization > problem_id, 2022-04-19 13:15:48 normalization > updated_at, 2022-04-19 13:15:48 normalization > assignee_id, 2022-04-19 13:15:48 normalization > description, 2022-04-19 13:15:48 normalization > external_id, 2022-04-19 13:15:48 normalization > raw_subject, 2022-04-19 13:15:48 normalization > email_cc_ids, 2022-04-19 13:15:48 normalization > follower_ids, 2022-04-19 13:15:48 normalization > followup_ids, 2022-04-19 13:15:48 normalization > requester_id, 2022-04-19 13:15:48 normalization > submitter_id, 2022-04-19 13:15:48 normalization > custom_fields, 2022-04-19 13:15:48 normalization > has_incidents, 2022-04-19 13:15:48 normalization > forum_topic_id, 2022-04-19 13:15:48 normalization > ticket_form_id, 2022-04-19 13:15:48 normalization > organization_id, 2022-04-19 13:15:48 normalization > collaborator_ids, 2022-04-19 13:15:48 normalization > allow_attachments, 2022-04-19 13:15:48 normalization > allow_channelback, 2022-04-19 13:15:48 normalization > generated_timestamp, 2022-04-19 13:15:48 normalization > satisfaction_rating, 2022-04-19 13:15:48 normalization > sharing_agreement_ids, 2022-04-19 13:15:48 normalization > updated_at as _airbyte_start_at, 2022-04-19 13:15:48 normalization > lag(updated_at) over ( 2022-04-19 13:15:48 normalization > partition by id 2022-04-19 13:15:48 normalization > order by 2022-04-19 13:15:48 normalization > updated_at is null asc, 2022-04-19 13:15:48 normalization > updated_at desc, 2022-04-19 13:15:48 normalization > _airbyte_emitted_at desc 2022-04-19 13:15:48 normalization > ) as _airbyte_end_at, 2022-04-19 13:15:48 normalization > case when row_number() over ( 2022-04-19 13:15:48 normalization > partition by id 2022-04-19 13:15:48 normalization > order by 2022-04-19 13:15:48 normalization > updated_at is null asc, 2022-04-19 13:15:48 normalization > updated_at desc, 2022-04-19 13:15:48 normalization > _airbyte_emitted_at desc 2022-04-19 13:15:48 normalization > ) = 1 then 1 else 0 end as _airbyte_active_row, 2022-04-19 13:15:48 normalization > _airbyte_ab_id, 2022-04-19 13:15:48 normalization > _airbyte_emitted_at, 2022-04-19 13:15:48 normalization > _airbyte_tickets_hashid 2022-04-19 13:15:48 normalization > from input_data 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > dedup_data as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > -- we need to ensure de-duplicated rows for merge/update queries 2022-04-19 13:15:48 normalization > -- additionally, we generate a unique key for the scd table 2022-04-19 13:15:48 normalization > row_number() over ( 2022-04-19 13:15:48 normalization > partition by 2022-04-19 13:15:48 normalization > _airbyte_unique_key, 2022-04-19 13:15:48 normalization > _airbyte_start_at, 2022-04-19 13:15:48 normalization > _airbyte_emitted_at 2022-04-19 13:15:48 normalization > order by _airbyte_active_row desc, _airbyte_ab_id 2022-04-19 13:15:48 normalization > ) as _airbyte_row_num, 2022-04-19 13:15:48 normalization > md5(cast(coalesce(cast(_airbyte_unique_key as varchar), '') || '-' || coalesce(cast(_airbyte_start_at as varchar), '') || '-' || coalesce(cast(_airbyte_emitted_at as varchar), '') as varchar)) as _airbyte_unique_key_scd, 2022-04-19 13:15:48 normalization > scd_data.* 2022-04-19 13:15:48 normalization > from scd_data 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > _airbyte_unique_key, 2022-04-19 13:15:48 normalization > _airbyte_unique_key_scd, 2022-04-19 13:15:48 normalization > id, 2022-04-19 13:15:48 normalization > url, 2022-04-19 13:15:48 normalization > via, 2022-04-19 13:15:48 normalization > tags, 2022-04-19 13:15:48 normalization > type, 2022-04-19 13:15:48 normalization > due_at, 2022-04-19 13:15:48 normalization > status, 2022-04-19 13:15:48 normalization > subject, 2022-04-19 13:15:48 normalization > brand_id, 2022-04-19 13:15:48 normalization > group_id, 2022-04-19 13:15:48 normalization > priority, 2022-04-19 13:15:48 normalization > is_public, 2022-04-19 13:15:48 normalization > recipient, 2022-04-19 13:15:48 normalization > created_at, 2022-04-19 13:15:48 normalization > problem_id, 2022-04-19 13:15:48 normalization > updated_at, 2022-04-19 13:15:48 normalization > assignee_id, 2022-04-19 13:15:48 normalization > description, 2022-04-19 13:15:48 normalization > external_id, 2022-04-19 13:15:48 normalization > raw_subject, 2022-04-19 13:15:48 normalization > email_cc_ids, 2022-04-19 13:15:48 normalization > follower_ids, 2022-04-19 13:15:48 normalization > followup_ids, 2022-04-19 13:15:48 normalization > requester_id, 2022-04-19 13:15:48 normalization > submitter_id, 2022-04-19 13:15:48 normalization > custom_fields, 2022-04-19 13:15:48 normalization > has_incidents, 2022-04-19 13:15:48 normalization > forum_topic_id, 2022-04-19 13:15:48 normalization > ticket_form_id, 2022-04-19 13:15:48 normalization > organization_id, 2022-04-19 13:15:48 normalization > collaborator_ids, 2022-04-19 13:15:48 normalization > allow_attachments, 2022-04-19 13:15:48 normalization > allow_channelback, 2022-04-19 13:15:48 normalization > generated_timestamp, 2022-04-19 13:15:48 normalization > satisfaction_rating, 2022-04-19 13:15:48 normalization > sharing_agreement_ids, 2022-04-19 13:15:48 normalization > _airbyte_start_at, 2022-04-19 13:15:48 normalization > _airbyte_end_at, 2022-04-19 13:15:48 normalization > _airbyte_active_row, 2022-04-19 13:15:48 normalization > _airbyte_ab_id, 2022-04-19 13:15:48 normalization > _airbyte_emitted_at, 2022-04-19 13:15:48 normalization > getdate() as _airbyte_normalized_at, 2022-04-19 13:15:48 normalization > _airbyte_tickets_hashid 2022-04-19 13:15:48 normalization > from dedup_data where _airbyte_row_num = 1 2022-04-19 13:15:48 normalization > ); 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.007791 (Thread-2): SQL status: INSERT 0 11088 in 0.29 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.013031 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.013245 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > with bound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > table_schema, 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from information_schema."columns" 2022-04-19 13:15:48 normalization > where table_name = 'ticket_metric_events_scd' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unbound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > view_schema, 2022-04-19 13:15:48 normalization > col_name, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:48 normalization > 'character varying' 2022-04-19 13:15:48 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else col_type 2022-04-19 13:15:48 normalization > end as col_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'character%' 2022-04-19 13:15:48 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:48 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:48 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:48 normalization > where view_name = 'ticket_metric_events_scd' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > external_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > columnnum, 2022-04-19 13:15:48 normalization > schemaname, 2022-04-19 13:15:48 normalization > columnname, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:48 normalization > then 'character varying' 2022-04-19 13:15:48 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else external_type 2022-04-19 13:15:48 normalization > end as external_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > from 2022-04-19 13:15:48 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:48 normalization > where 2022-04-19 13:15:48 normalization > schemaname = 'zendesk' 2022-04-19 13:15:48 normalization > and tablename = 'ticket_metric_events_scd' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unioned as ( 2022-04-19 13:15:48 normalization > select * from bound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from unbound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from external_views 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from unioned 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > order by ordinal_position 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.431641 (Thread-2): SQL status: SELECT in 0.42 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.434205 (Thread-2): 'soft_unicode' has been renamed to 'soft_str'. The old name will be removed in MarkupSafe 2.1. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.434527 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.434663 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > drop view _airbyte_zendesk.ticket_metric_events_stg 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.441108 (Thread-2): SQL status: DROP VIEW in 0.01 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.442097 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: COMMIT 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.442247 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.442380 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: COMMIT 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.532852 (Thread-2): SQL status: COMMIT in 0.09 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.533722 (Thread-2): finished collecting timing info 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.533936 (Thread-2): On model.airbyte_utils.ticket_metric_events_scd: Close 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.534906 (Thread-2): 13:15:17 | 8 of 33 OK created incremental model zendesk.ticket_metric_events_scd........................................ [INSERT 0 11088 in 7.48s] 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.535454 (Thread-2): Finished running node model.airbyte_utils.ticket_metric_events_scd 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.535777 (Thread-2): Began running node model.airbyte_utils.sla_policies_filter_ab1 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.536577 (Thread-2): Acquiring new redshift connection "model.airbyte_utils.sla_policies_filter_ab1". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.536766 (Thread-2): Compiling model.airbyte_utils.sla_policies_filter_ab1 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.558269 (Thread-2): Writing injected SQL for node "model.airbyte_utils.sla_policies_filter_ab1" 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.558714 (Thread-2): finished collecting timing info 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.559176 (Thread-2): Finished running node model.airbyte_utils.sla_policies_filter_ab1 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.559395 (Thread-2): Began running node model.airbyte_utils.sla_policies_policy_metrics_ab1 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.560022 (Thread-2): Acquiring new redshift connection "model.airbyte_utils.sla_policies_policy_metrics_ab1". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.560191 (Thread-2): Compiling model.airbyte_utils.sla_policies_policy_metrics_ab1 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.589917 (Thread-2): Using redshift connection "model.airbyte_utils.sla_policies_policy_metrics_ab1". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.590162 (Thread-2): On model.airbyte_utils.sla_policies_policy_metrics_ab1: BEGIN 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.590318 (Thread-2): Opening a new connection, currently in state closed 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.590435 (Thread-2): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.642443 (Thread-2): SQL status: BEGIN in 0.05 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.642732 (Thread-2): Using redshift connection "model.airbyte_utils.sla_policies_policy_metrics_ab1". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.642864 (Thread-2): On model.airbyte_utils.sla_policies_policy_metrics_ab1: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.sla_policies_policy_metrics_ab1"} */ 2022-04-19 13:15:48 normalization > with max_value as ( 2022-04-19 13:15:48 normalization > select max(json_array_length(policy_metrics, true)) as max_number_of_items 2022-04-19 13:15:48 normalization > from "datalake".zendesk."sla_policies" 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > case when max_number_of_items is not null and max_number_of_items > 1 2022-04-19 13:15:48 normalization > then max_number_of_items 2022-04-19 13:15:48 normalization > else 1 end as max_number_of_items 2022-04-19 13:15:48 normalization > from max_value 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.730965 (Thread-2): SQL status: SELECT in 0.09 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.765851 (Thread-2): Writing injected SQL for node "model.airbyte_utils.sla_policies_policy_metrics_ab1" 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.766333 (Thread-2): finished collecting timing info 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.766543 (Thread-2): On model.airbyte_utils.sla_policies_policy_metrics_ab1: ROLLBACK 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.776380 (Thread-2): On model.airbyte_utils.sla_policies_policy_metrics_ab1: Close 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.777131 (Thread-2): Finished running node model.airbyte_utils.sla_policies_policy_metrics_ab1 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.777374 (Thread-2): Began running node model.airbyte_utils.ticket_metric_events 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.778084 (Thread-2): 13:15:17 | 12 of 33 START incremental model zendesk.ticket_metric_events................................................ [RUN] 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.778730 (Thread-2): Acquiring new redshift connection "model.airbyte_utils.ticket_metric_events". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.778945 (Thread-2): Compiling model.airbyte_utils.ticket_metric_events 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.806946 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.807193 (Thread-2): On model.airbyte_utils.ticket_metric_events: BEGIN 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.807338 (Thread-2): Opening a new connection, currently in state closed 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.807454 (Thread-2): Connecting to Redshift using 'database' credentials 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.877239 (Thread-2): SQL status: BEGIN in 0.07 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.877544 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.877675 (Thread-2): On model.airbyte_utils.ticket_metric_events: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > with bound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > table_schema, 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from information_schema."columns" 2022-04-19 13:15:48 normalization > where table_name = 'ticket_metric_events' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unbound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > view_schema, 2022-04-19 13:15:48 normalization > col_name, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:48 normalization > 'character varying' 2022-04-19 13:15:48 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else col_type 2022-04-19 13:15:48 normalization > end as col_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'character%' 2022-04-19 13:15:48 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:48 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:48 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:48 normalization > where view_name = 'ticket_metric_events' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > external_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > columnnum, 2022-04-19 13:15:48 normalization > schemaname, 2022-04-19 13:15:48 normalization > columnname, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:48 normalization > then 'character varying' 2022-04-19 13:15:48 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else external_type 2022-04-19 13:15:48 normalization > end as external_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > from 2022-04-19 13:15:48 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:48 normalization > where 2022-04-19 13:15:48 normalization > schemaname = 'zendesk' 2022-04-19 13:15:48 normalization > and tablename = 'ticket_metric_events' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unioned as ( 2022-04-19 13:15:48 normalization > select * from bound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from unbound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from external_views 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from unioned 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > order by ordinal_position 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.989862 (Thread-3): SQL status: SELECT in 1.46 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.994287 (Thread-3): Using redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:17.994534 (Thread-3): On model.airbyte_utils.ticket_fields_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > with bound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > table_schema, 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from information_schema."columns" 2022-04-19 13:15:48 normalization > where table_name = 'ticket_fields_scd__dbt_tmp131516170906' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unbound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > view_schema, 2022-04-19 13:15:48 normalization > col_name, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:48 normalization > 'character varying' 2022-04-19 13:15:48 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else col_type 2022-04-19 13:15:48 normalization > end as col_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'character%' 2022-04-19 13:15:48 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:48 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:48 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:48 normalization > where view_name = 'ticket_fields_scd__dbt_tmp131516170906' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > external_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > columnnum, 2022-04-19 13:15:48 normalization > schemaname, 2022-04-19 13:15:48 normalization > columnname, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:48 normalization > then 'character varying' 2022-04-19 13:15:48 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else external_type 2022-04-19 13:15:48 normalization > end as external_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > from 2022-04-19 13:15:48 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:48 normalization > where 2022-04-19 13:15:48 normalization > schemaname = 'None' 2022-04-19 13:15:48 normalization > and tablename = 'ticket_fields_scd__dbt_tmp131516170906' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unioned as ( 2022-04-19 13:15:48 normalization > select * from bound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from unbound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from external_views 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from unioned 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > order by ordinal_position 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.403298 (Thread-2): SQL status: SELECT in 0.53 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.406211 (Thread-2): Writing injected SQL for node "model.airbyte_utils.ticket_metric_events" 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.406578 (Thread-2): finished collecting timing info 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.421633 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.421846 (Thread-3): SQL status: SELECT in 0.43 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.422024 (Thread-2): On model.airbyte_utils.ticket_metric_events: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > with bound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > table_schema, 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from information_schema."columns" 2022-04-19 13:15:48 normalization > where table_name = 'ticket_metric_events' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unbound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > view_schema, 2022-04-19 13:15:48 normalization > col_name, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:48 normalization > 'character varying' 2022-04-19 13:15:48 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else col_type 2022-04-19 13:15:48 normalization > end as col_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'character%' 2022-04-19 13:15:48 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:48 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:48 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:48 normalization > where view_name = 'ticket_metric_events' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > external_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > columnnum, 2022-04-19 13:15:48 normalization > schemaname, 2022-04-19 13:15:48 normalization > columnname, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:48 normalization > then 'character varying' 2022-04-19 13:15:48 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else external_type 2022-04-19 13:15:48 normalization > end as external_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > from 2022-04-19 13:15:48 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:48 normalization > where 2022-04-19 13:15:48 normalization > schemaname = 'zendesk' 2022-04-19 13:15:48 normalization > and tablename = 'ticket_metric_events' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unioned as ( 2022-04-19 13:15:48 normalization > select * from bound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from unbound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from external_views 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from unioned 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > order by ordinal_position 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.436812 (Thread-3): Using redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.437223 (Thread-3): On model.airbyte_utils.ticket_fields_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > with bound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > table_schema, 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from information_schema."columns" 2022-04-19 13:15:48 normalization > where table_name = 'ticket_fields_scd' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unbound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > view_schema, 2022-04-19 13:15:48 normalization > col_name, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:48 normalization > 'character varying' 2022-04-19 13:15:48 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else col_type 2022-04-19 13:15:48 normalization > end as col_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'character%' 2022-04-19 13:15:48 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:48 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:48 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:48 normalization > where view_name = 'ticket_fields_scd' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > external_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > columnnum, 2022-04-19 13:15:48 normalization > schemaname, 2022-04-19 13:15:48 normalization > columnname, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:48 normalization > then 'character varying' 2022-04-19 13:15:48 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else external_type 2022-04-19 13:15:48 normalization > end as external_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > from 2022-04-19 13:15:48 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:48 normalization > where 2022-04-19 13:15:48 normalization > schemaname = 'zendesk' 2022-04-19 13:15:48 normalization > and tablename = 'ticket_fields_scd' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unioned as ( 2022-04-19 13:15:48 normalization > select * from bound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from unbound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from external_views 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from unioned 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > order by ordinal_position 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.714339 (Thread-2): SQL status: SELECT in 0.28 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.719873 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.720065 (Thread-2): On model.airbyte_utils.ticket_metric_events: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > create temporary table 2022-04-19 13:15:48 normalization > "ticket_metric_events__dbt_tmp131518411171" 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > compound sortkey(_airbyte_unique_key,_airbyte_emitted_at) 2022-04-19 13:15:48 normalization > as ( 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > -- Final base SQL model 2022-04-19 13:15:48 normalization > -- depends_on: "datalake".zendesk."ticket_metric_events_scd" 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > _airbyte_unique_key, 2022-04-19 13:15:48 normalization > id, 2022-04-19 13:15:48 normalization > "time", 2022-04-19 13:15:48 normalization > type, 2022-04-19 13:15:48 normalization > metric, 2022-04-19 13:15:48 normalization > ticket_id, 2022-04-19 13:15:48 normalization > instance_id, 2022-04-19 13:15:48 normalization > _airbyte_ab_id, 2022-04-19 13:15:48 normalization > _airbyte_emitted_at, 2022-04-19 13:15:48 normalization > getdate() as _airbyte_normalized_at, 2022-04-19 13:15:48 normalization > _airbyte_ticket_metric_events_hashid 2022-04-19 13:15:48 normalization > from "datalake".zendesk."ticket_metric_events_scd" 2022-04-19 13:15:48 normalization > -- ticket_metric_events from "datalake".zendesk._airbyte_raw_ticket_metric_events 2022-04-19 13:15:48 normalization > where 1 = 1 2022-04-19 13:15:48 normalization > and _airbyte_active_row = 1 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > and coalesce( 2022-04-19 13:15:48 normalization > cast(_airbyte_emitted_at as 2022-04-19 13:15:48 normalization > timestamp with time zone 2022-04-19 13:15:48 normalization > ) >= (select max(cast(_airbyte_emitted_at as 2022-04-19 13:15:48 normalization > timestamp with time zone 2022-04-19 13:15:48 normalization > )) from "datalake".zendesk."ticket_metric_events"), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > true) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ); 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.755053 (Thread-3): SQL status: SELECT in 0.32 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.761275 (Thread-3): Using redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.761470 (Thread-3): On model.airbyte_utils.ticket_fields_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > with bound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > table_schema, 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from information_schema."columns" 2022-04-19 13:15:48 normalization > where table_name = 'ticket_fields_scd__dbt_tmp131516170906' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unbound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > view_schema, 2022-04-19 13:15:48 normalization > col_name, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:48 normalization > 'character varying' 2022-04-19 13:15:48 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else col_type 2022-04-19 13:15:48 normalization > end as col_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'character%' 2022-04-19 13:15:48 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:48 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:48 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:48 normalization > where view_name = 'ticket_fields_scd__dbt_tmp131516170906' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > external_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > columnnum, 2022-04-19 13:15:48 normalization > schemaname, 2022-04-19 13:15:48 normalization > columnname, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:48 normalization > then 'character varying' 2022-04-19 13:15:48 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else external_type 2022-04-19 13:15:48 normalization > end as external_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > from 2022-04-19 13:15:48 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:48 normalization > where 2022-04-19 13:15:48 normalization > schemaname = 'None' 2022-04-19 13:15:48 normalization > and tablename = 'ticket_fields_scd__dbt_tmp131516170906' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unioned as ( 2022-04-19 13:15:48 normalization > select * from bound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from unbound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from external_views 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from unioned 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > order by ordinal_position 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.920163 (Thread-1): SQL status: SELECT in 2.02 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.925026 (Thread-1): Using redshift connection "model.airbyte_utils.tickets_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.925236 (Thread-1): On model.airbyte_utils.tickets_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > with bound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > table_schema, 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from information_schema."columns" 2022-04-19 13:15:48 normalization > where table_name = 'tickets_scd__dbt_tmp131516397949' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unbound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > view_schema, 2022-04-19 13:15:48 normalization > col_name, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:48 normalization > 'character varying' 2022-04-19 13:15:48 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else col_type 2022-04-19 13:15:48 normalization > end as col_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'character%' 2022-04-19 13:15:48 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:48 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:48 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:48 normalization > where view_name = 'tickets_scd__dbt_tmp131516397949' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > external_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > columnnum, 2022-04-19 13:15:48 normalization > schemaname, 2022-04-19 13:15:48 normalization > columnname, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:48 normalization > then 'character varying' 2022-04-19 13:15:48 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else external_type 2022-04-19 13:15:48 normalization > end as external_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > from 2022-04-19 13:15:48 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:48 normalization > where 2022-04-19 13:15:48 normalization > schemaname = 'None' 2022-04-19 13:15:48 normalization > and tablename = 'tickets_scd__dbt_tmp131516397949' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unioned as ( 2022-04-19 13:15:48 normalization > select * from bound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from unbound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from external_views 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from unioned 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > order by ordinal_position 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.984381 (Thread-3): SQL status: SELECT in 0.22 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.989884 (Thread-3): Using redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:18.990066 (Thread-3): On model.airbyte_utils.ticket_fields_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > with bound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > table_schema, 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from information_schema."columns" 2022-04-19 13:15:48 normalization > where table_name = 'ticket_fields_scd' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unbound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > view_schema, 2022-04-19 13:15:48 normalization > col_name, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:48 normalization > 'character varying' 2022-04-19 13:15:48 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else col_type 2022-04-19 13:15:48 normalization > end as col_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'character%' 2022-04-19 13:15:48 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:48 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:48 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:48 normalization > where view_name = 'ticket_fields_scd' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > external_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > columnnum, 2022-04-19 13:15:48 normalization > schemaname, 2022-04-19 13:15:48 normalization > columnname, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:48 normalization > then 'character varying' 2022-04-19 13:15:48 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else external_type 2022-04-19 13:15:48 normalization > end as external_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > from 2022-04-19 13:15:48 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:48 normalization > where 2022-04-19 13:15:48 normalization > schemaname = 'zendesk' 2022-04-19 13:15:48 normalization > and tablename = 'ticket_fields_scd' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unioned as ( 2022-04-19 13:15:48 normalization > select * from bound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from unbound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from external_views 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from unioned 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > order by ordinal_position 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.149354 (Thread-1): SQL status: SELECT in 0.22 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.156311 (Thread-1): Using redshift connection "model.airbyte_utils.tickets_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.156499 (Thread-1): On model.airbyte_utils.tickets_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > with bound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > table_schema, 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from information_schema."columns" 2022-04-19 13:15:48 normalization > where table_name = 'tickets_scd' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unbound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > view_schema, 2022-04-19 13:15:48 normalization > col_name, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:48 normalization > 'character varying' 2022-04-19 13:15:48 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else col_type 2022-04-19 13:15:48 normalization > end as col_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'character%' 2022-04-19 13:15:48 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:48 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:48 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:48 normalization > where view_name = 'tickets_scd' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > external_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > columnnum, 2022-04-19 13:15:48 normalization > schemaname, 2022-04-19 13:15:48 normalization > columnname, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:48 normalization > then 'character varying' 2022-04-19 13:15:48 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else external_type 2022-04-19 13:15:48 normalization > end as external_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > from 2022-04-19 13:15:48 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:48 normalization > where 2022-04-19 13:15:48 normalization > schemaname = 'zendesk' 2022-04-19 13:15:48 normalization > and tablename = 'tickets_scd' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unioned as ( 2022-04-19 13:15:48 normalization > select * from bound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from unbound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from external_views 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from unioned 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > order by ordinal_position 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.212340 (Thread-3): SQL status: SELECT in 0.22 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.221324 (Thread-3): 2022-04-19 13:15:48 normalization > In "datalake"."zendesk"."ticket_fields_scd": 2022-04-19 13:15:48 normalization > Schema changed: False 2022-04-19 13:15:48 normalization > Source columns not in target: [] 2022-04-19 13:15:48 normalization > Target columns not in source: [] 2022-04-19 13:15:48 normalization > New column types: [] 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.224367 (Thread-3): Using redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.224522 (Thread-3): On model.airbyte_utils.ticket_fields_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > with bound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > table_schema, 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from information_schema."columns" 2022-04-19 13:15:48 normalization > where table_name = 'ticket_fields_scd' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unbound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > view_schema, 2022-04-19 13:15:48 normalization > col_name, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:48 normalization > 'character varying' 2022-04-19 13:15:48 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else col_type 2022-04-19 13:15:48 normalization > end as col_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'character%' 2022-04-19 13:15:48 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:48 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:48 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:48 normalization > where view_name = 'ticket_fields_scd' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > external_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > columnnum, 2022-04-19 13:15:48 normalization > schemaname, 2022-04-19 13:15:48 normalization > columnname, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:48 normalization > then 'character varying' 2022-04-19 13:15:48 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else external_type 2022-04-19 13:15:48 normalization > end as external_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > from 2022-04-19 13:15:48 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:48 normalization > where 2022-04-19 13:15:48 normalization > schemaname = 'zendesk' 2022-04-19 13:15:48 normalization > and tablename = 'ticket_fields_scd' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unioned as ( 2022-04-19 13:15:48 normalization > select * from bound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from unbound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from external_views 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from unioned 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > order by ordinal_position 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.370883 (Thread-1): SQL status: SELECT in 0.21 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.379492 (Thread-1): Using redshift connection "model.airbyte_utils.tickets_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.379671 (Thread-1): On model.airbyte_utils.tickets_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > with bound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > table_schema, 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from information_schema."columns" 2022-04-19 13:15:48 normalization > where table_name = 'tickets_scd__dbt_tmp131516397949' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unbound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > view_schema, 2022-04-19 13:15:48 normalization > col_name, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:48 normalization > 'character varying' 2022-04-19 13:15:48 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else col_type 2022-04-19 13:15:48 normalization > end as col_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'character%' 2022-04-19 13:15:48 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:48 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:48 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:48 normalization > where view_name = 'tickets_scd__dbt_tmp131516397949' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > external_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > columnnum, 2022-04-19 13:15:48 normalization > schemaname, 2022-04-19 13:15:48 normalization > columnname, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:48 normalization > then 'character varying' 2022-04-19 13:15:48 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else external_type 2022-04-19 13:15:48 normalization > end as external_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > from 2022-04-19 13:15:48 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:48 normalization > where 2022-04-19 13:15:48 normalization > schemaname = 'None' 2022-04-19 13:15:48 normalization > and tablename = 'tickets_scd__dbt_tmp131516397949' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unioned as ( 2022-04-19 13:15:48 normalization > select * from bound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from unbound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from external_views 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from unioned 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > order by ordinal_position 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.443551 (Thread-3): SQL status: SELECT in 0.22 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.446809 (Thread-3): Writing runtime SQL for node "model.airbyte_utils.ticket_fields_scd" 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.447266 (Thread-3): Using redshift connection "model.airbyte_utils.ticket_fields_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.447424 (Thread-3): On model.airbyte_utils.ticket_fields_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_fields_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > delete 2022-04-19 13:15:48 normalization > from "datalake".zendesk."ticket_fields_scd" 2022-04-19 13:15:48 normalization > where (_airbyte_unique_key_scd) in ( 2022-04-19 13:15:48 normalization > select (_airbyte_unique_key_scd) 2022-04-19 13:15:48 normalization > from "ticket_fields_scd__dbt_tmp131516170906" 2022-04-19 13:15:48 normalization > ); 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > insert into "datalake".zendesk."ticket_fields_scd" ("_airbyte_unique_key", "_airbyte_unique_key_scd", "id", "tag", "url", "type", "title", "active", "position", "required", "raw_title", "removable", "created_at", "updated_at", "description", "sub_type_id", "raw_description", "title_in_portal", "agent_description", "visible_in_portal", "editable_in_portal", "required_in_portal", "raw_title_in_portal", "collapsed_for_agents", "custom_field_options", "system_field_options", "regexp_for_validation", "_airbyte_start_at", "_airbyte_end_at", "_airbyte_active_row", "_airbyte_ab_id", "_airbyte_emitted_at", "_airbyte_normalized_at", "_airbyte_ticket_fields_hashid") 2022-04-19 13:15:48 normalization > ( 2022-04-19 13:15:48 normalization > select "_airbyte_unique_key", "_airbyte_unique_key_scd", "id", "tag", "url", "type", "title", "active", "position", "required", "raw_title", "removable", "created_at", "updated_at", "description", "sub_type_id", "raw_description", "title_in_portal", "agent_description", "visible_in_portal", "editable_in_portal", "required_in_portal", "raw_title_in_portal", "collapsed_for_agents", "custom_field_options", "system_field_options", "regexp_for_validation", "_airbyte_start_at", "_airbyte_end_at", "_airbyte_active_row", "_airbyte_ab_id", "_airbyte_emitted_at", "_airbyte_normalized_at", "_airbyte_ticket_fields_hashid" 2022-04-19 13:15:48 normalization > from "ticket_fields_scd__dbt_tmp131516170906" 2022-04-19 13:15:48 normalization > ); 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.617022 (Thread-1): SQL status: SELECT in 0.24 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.623064 (Thread-1): Using redshift connection "model.airbyte_utils.tickets_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.623226 (Thread-1): On model.airbyte_utils.tickets_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > with bound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > table_schema, 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from information_schema."columns" 2022-04-19 13:15:48 normalization > where table_name = 'tickets_scd' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unbound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > view_schema, 2022-04-19 13:15:48 normalization > col_name, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:48 normalization > 'character varying' 2022-04-19 13:15:48 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else col_type 2022-04-19 13:15:48 normalization > end as col_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'character%' 2022-04-19 13:15:48 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:48 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:48 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:48 normalization > where view_name = 'tickets_scd' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > external_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > columnnum, 2022-04-19 13:15:48 normalization > schemaname, 2022-04-19 13:15:48 normalization > columnname, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:48 normalization > then 'character varying' 2022-04-19 13:15:48 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else external_type 2022-04-19 13:15:48 normalization > end as external_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > from 2022-04-19 13:15:48 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:48 normalization > where 2022-04-19 13:15:48 normalization > schemaname = 'zendesk' 2022-04-19 13:15:48 normalization > and tablename = 'tickets_scd' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unioned as ( 2022-04-19 13:15:48 normalization > select * from bound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from unbound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from external_views 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from unioned 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > order by ordinal_position 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.697094 (Thread-2): SQL status: SELECT in 0.98 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.701550 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.701711 (Thread-2): On model.airbyte_utils.ticket_metric_events: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > with bound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > table_schema, 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from information_schema."columns" 2022-04-19 13:15:48 normalization > where table_name = 'ticket_metric_events__dbt_tmp131518411171' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unbound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > view_schema, 2022-04-19 13:15:48 normalization > col_name, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:48 normalization > 'character varying' 2022-04-19 13:15:48 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else col_type 2022-04-19 13:15:48 normalization > end as col_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'character%' 2022-04-19 13:15:48 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:48 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:48 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:48 normalization > where view_name = 'ticket_metric_events__dbt_tmp131518411171' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > external_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > columnnum, 2022-04-19 13:15:48 normalization > schemaname, 2022-04-19 13:15:48 normalization > columnname, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:48 normalization > then 'character varying' 2022-04-19 13:15:48 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else external_type 2022-04-19 13:15:48 normalization > end as external_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > from 2022-04-19 13:15:48 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:48 normalization > where 2022-04-19 13:15:48 normalization > schemaname = 'None' 2022-04-19 13:15:48 normalization > and tablename = 'ticket_metric_events__dbt_tmp131518411171' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unioned as ( 2022-04-19 13:15:48 normalization > select * from bound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from unbound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from external_views 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from unioned 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > order by ordinal_position 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.859935 (Thread-1): SQL status: SELECT in 0.24 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.873618 (Thread-1): 2022-04-19 13:15:48 normalization > In "datalake"."zendesk"."tickets_scd": 2022-04-19 13:15:48 normalization > Schema changed: True 2022-04-19 13:15:48 normalization > Source columns not in target: [] 2022-04-19 13:15:48 normalization > Target columns not in source: [] 2022-04-19 13:15:48 normalization > New column types: [{'column_name': '_airbyte_start_at', 'new_type': 'timestamp with time zone'}, {'column_name': '_airbyte_end_at', 'new_type': 'timestamp with time zone'}] 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.891344 (Thread-1): Using redshift connection "model.airbyte_utils.tickets_scd". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.891560 (Thread-1): On model.airbyte_utils.tickets_scd: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.tickets_scd"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > alter table "datalake"."zendesk"."tickets_scd" add column "_airbyte_start_at__dbt_alter" timestamp with time zone; 2022-04-19 13:15:48 normalization > update "datalake"."zendesk"."tickets_scd" set "_airbyte_start_at__dbt_alter" = "_airbyte_start_at"; 2022-04-19 13:15:48 normalization > alter table "datalake"."zendesk"."tickets_scd" drop column "_airbyte_start_at" cascade; 2022-04-19 13:15:48 normalization > alter table "datalake"."zendesk"."tickets_scd" rename column "_airbyte_start_at__dbt_alter" to "_airbyte_start_at" 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.904420 (Thread-2): SQL status: SELECT in 0.20 seconds 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.909437 (Thread-2): Using redshift connection "model.airbyte_utils.ticket_metric_events". 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.909618 (Thread-2): On model.airbyte_utils.ticket_metric_events: /* {"app": "dbt", "dbt_version": "0.21.1", "profile_name": "normalize", "target_name": "prod", "node_id": "model.airbyte_utils.ticket_metric_events"} */ 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > with bound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > table_schema, 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from information_schema."columns" 2022-04-19 13:15:48 normalization > where table_name = 'ticket_metric_events' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unbound_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > ordinal_position, 2022-04-19 13:15:48 normalization > view_schema, 2022-04-19 13:15:48 normalization > col_name, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type ilike 'character varying%' then 2022-04-19 13:15:48 normalization > 'character varying' 2022-04-19 13:15:48 normalization > when col_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else col_type 2022-04-19 13:15:48 normalization > end as col_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'character%' 2022-04-19 13:15:48 normalization > then nullif(REGEXP_SUBSTR(col_type, '[0-9]+'), '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when col_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(col_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from pg_get_late_binding_view_cols() 2022-04-19 13:15:48 normalization > cols(view_schema name, view_name name, col_name name, 2022-04-19 13:15:48 normalization > col_type varchar, ordinal_position int) 2022-04-19 13:15:48 normalization > where view_name = 'ticket_metric_events' 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > external_views as ( 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > columnnum, 2022-04-19 13:15:48 normalization > schemaname, 2022-04-19 13:15:48 normalization > columnname, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type ilike 'character varying%' or external_type ilike 'varchar%' 2022-04-19 13:15:48 normalization > then 'character varying' 2022-04-19 13:15:48 normalization > when external_type ilike 'numeric%' then 'numeric' 2022-04-19 13:15:48 normalization > else external_type 2022-04-19 13:15:48 normalization > end as external_type, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'character%' or external_type like 'varchar%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > REGEXP_SUBSTR(external_type, '[0-9]+'), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as character_maximum_length, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 1), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_precision, 2022-04-19 13:15:48 normalization > case 2022-04-19 13:15:48 normalization > when external_type like 'numeric%' 2022-04-19 13:15:48 normalization > then nullif( 2022-04-19 13:15:48 normalization > SPLIT_PART(REGEXP_SUBSTR(external_type, '[0-9,]+'), ',', 2), 2022-04-19 13:15:48 normalization > '')::int 2022-04-19 13:15:48 normalization > else null 2022-04-19 13:15:48 normalization > end as numeric_scale 2022-04-19 13:15:48 normalization > from 2022-04-19 13:15:48 normalization > pg_catalog.svv_external_columns 2022-04-19 13:15:48 normalization > where 2022-04-19 13:15:48 normalization > schemaname = 'zendesk' 2022-04-19 13:15:48 normalization > and tablename = 'ticket_metric_events' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > ), 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > unioned as ( 2022-04-19 13:15:48 normalization > select * from bound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from unbound_views 2022-04-19 13:15:48 normalization > union all 2022-04-19 13:15:48 normalization > select * from external_views 2022-04-19 13:15:48 normalization > ) 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > select 2022-04-19 13:15:48 normalization > column_name, 2022-04-19 13:15:48 normalization > data_type, 2022-04-19 13:15:48 normalization > character_maximum_length, 2022-04-19 13:15:48 normalization > numeric_precision, 2022-04-19 13:15:48 normalization > numeric_scale 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > from unioned 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > where table_schema = 'zendesk' 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > order by ordinal_position 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.995509 (Thread-1): Postgres error: column "_airbyte_start_at__dbt_alter" is of type timestamp with time zone but expression is of type bigint 2022-04-19 13:15:48 normalization > HINT: You will need to rewrite or cast the expression. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.995830 (Thread-1): On model.airbyte_utils.tickets_scd: ROLLBACK 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.999523 (Thread-1): finished collecting timing info 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:19.999752 (Thread-1): On model.airbyte_utils.tickets_scd: Close 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:20.000488 (Thread-1): Database Error in model tickets_scd (models/generated/airbyte_incremental/scd/zendesk/tickets_scd.sql) 2022-04-19 13:15:48 normalization > column "_airbyte_start_at__dbt_alter" is of type timestamp with time zone but expression is of type bigint 2022-04-19 13:15:48 normalization > HINT: You will need to rewrite or cast the expression. 2022-04-19 13:15:48 normalization > Traceback (most recent call last): 2022-04-19 13:15:48 normalization > File "/usr/local/lib/python3.8/site-packages/dbt/adapters/postgres/connections.py", line 56, in exception_handler 2022-04-19 13:15:48 normalization > yield 2022-04-19 13:15:48 normalization > File "/usr/local/lib/python3.8/site-packages/dbt/adapters/sql/connections.py", line 80, in add_query 2022-04-19 13:15:48 normalization > cursor.execute(sql, bindings) 2022-04-19 13:15:48 normalization > psycopg2.errors.DatatypeMismatch: column "_airbyte_start_at__dbt_alter" is of type timestamp with time zone but expression is of type bigint 2022-04-19 13:15:48 normalization > HINT: You will need to rewrite or cast the expression. 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > The above exception was the direct cause of the following exception: 2022-04-19 13:15:48 normalization > 2022-04-19 13:15:48 normalization > Traceback (most recent call last): 2022-04-19 13:15:48 normalization > File "/usr/local/lib/python3.8/site-packages/dbt/task/base.py", line 348, in safe_run 2022-04-19 13:15:48 normalization > result = self.compile_and_execute(manifest, ctx) 2022-04-19 13:15:48 normalization > File "/usr/local/lib/python3.8/site-packages/dbt/task/base.py", line 291, in compile_and_execute 2022-04-19 13:15:48 normalization > result = self.run(ctx.node, manifest) 2022-04-19 13:15:48 normalization > File "/usr/local/lib/python3.8/site-packages/dbt/task/base.py", line 393, in run 2022-04-19 13:15:48 normalization > return self.execute(compiled_node, manifest) 2022-04-19 13:15:48 normalization > File "/usr/local/lib/python3.8/site-packages/dbt/task/run.py", line 249, in execute 2022-04-19 13:15:48 normalization > result = MacroGenerator(materialization_macro, context)() 2022-04-19 13:15:48 normalization > File "/usr/local/lib/python3.8/site-packages/dbt/clients/jinja.py", line 333, in __call__ 2022-04-19 13:15:48 normalization > return self.call_macro(*args, **kwargs) 2022-04-19 13:15:48 normalization > File "/usr/local/lib/python3.8/site-packages/dbt/clients/jinja.py", line 260, in call_macro 2022-04-19 13:15:48 normalization > return macro(*args, **kwargs) 2022-04-19 13:15:48 normalization > File "/usr/local/lib/python3.8/site-packages/jinja2/runtime.py", line 675, in __call__ 2022-04-19 13:15:48 normalization > return self._invoke(arguments, autoescape) 2022-04-19 13:15:48 normalization > File "/usr/local/lib/python3.8/site-packages/jinja2/runtime.py", line 679, in _invoke 2022-04-19 13:15:48 normalization > rv = self._func(*arguments) 2022-04-19 13:15:48 normalization > File "