forked from FlowiseAI/Flowise
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVectorDBQAChain.ts
101 lines (91 loc) · 3.79 KB
/
VectorDBQAChain.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import { BaseLanguageModel } from '@langchain/core/language_models/base'
import { VectorStore } from '@langchain/core/vectorstores'
import { VectorDBQAChain } from 'langchain/chains'
import { ConsoleCallbackHandler, CustomChainHandler, additionalCallbacks } from '../../../src/handler'
import { ICommonObject, INode, INodeData, INodeParams, IServerSideEventStreamer } from '../../../src/Interface'
import { getBaseClasses } from '../../../src/utils'
import { checkInputs, Moderation } from '../../moderation/Moderation'
import { formatResponse } from '../../outputparsers/OutputParserHelpers'
class VectorDBQAChain_Chains implements INode {
label: string
name: string
version: number
type: string
icon: string
category: string
baseClasses: string[]
description: string
inputs: INodeParams[]
constructor() {
this.label = 'VectorDB QA Chain'
this.name = 'vectorDBQAChain'
this.version = 2.0
this.type = 'VectorDBQAChain'
this.icon = 'vectordb.svg'
this.category = 'Chains'
this.description = 'QA chain for vector databases'
this.baseClasses = [this.type, ...getBaseClasses(VectorDBQAChain)]
this.inputs = [
{
label: 'Language Model',
name: 'model',
type: 'BaseLanguageModel'
},
{
label: 'Vector Store',
name: 'vectorStore',
type: 'VectorStore'
},
{
label: 'Input Moderation',
description: 'Detect text that could generate harmful output and prevent it from being sent to the language model',
name: 'inputModeration',
type: 'Moderation',
optional: true,
list: true
}
]
}
async init(nodeData: INodeData): Promise<any> {
const model = nodeData.inputs?.model as BaseLanguageModel
const vectorStore = nodeData.inputs?.vectorStore as VectorStore
const chain = VectorDBQAChain.fromLLM(model, vectorStore, {
k: (vectorStore as any)?.k ?? 4,
verbose: process.env.DEBUG === 'true'
})
return chain
}
async run(nodeData: INodeData, input: string, options: ICommonObject): Promise<string | object> {
const chain = nodeData.instance as VectorDBQAChain
const moderations = nodeData.inputs?.inputModeration as Moderation[]
const shouldStreamResponse = options.shouldStreamResponse
const sseStreamer: IServerSideEventStreamer = options.sseStreamer as IServerSideEventStreamer
const chatId = options.chatId
if (moderations && moderations.length > 0) {
try {
// Use the output of the moderation chain as input for the VectorDB QA Chain
input = await checkInputs(moderations, input)
} catch (e) {
await new Promise((resolve) => setTimeout(resolve, 500))
// if (options.shouldStreamResponse) {
// streamResponse(options.sseStreamer, options.chatId, e.message)
// }
return formatResponse(e.message)
}
}
const obj = {
query: input
}
const loggerHandler = new ConsoleCallbackHandler(options.logger)
const callbacks = await additionalCallbacks(nodeData, options)
if (shouldStreamResponse) {
const handler = new CustomChainHandler(sseStreamer, chatId)
const res = await chain.call(obj, [loggerHandler, handler, ...callbacks])
return res?.text
} else {
const res = await chain.call(obj, [loggerHandler, ...callbacks])
return res?.text
}
}
}
module.exports = { nodeClass: VectorDBQAChain_Chains }