forked from FlowiseAI/Flowise
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGETApiChain.ts
138 lines (124 loc) · 5.62 KB
/
GETApiChain.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import { BaseLanguageModel } from '@langchain/core/language_models/base'
import { PromptTemplate } from '@langchain/core/prompts'
import { APIChain } from 'langchain/chains'
import { getBaseClasses } from '../../../src/utils'
import { ICommonObject, INode, INodeData, INodeParams, IServerSideEventStreamer } from '../../../src/Interface'
import { ConsoleCallbackHandler, CustomChainHandler, additionalCallbacks } from '../../../src/handler'
export const API_URL_RAW_PROMPT_TEMPLATE = `You are given the below API Documentation:
{api_docs}
Using this documentation, generate the full API url to call for answering the user question.
You should build the API url in order to get a response that is as short as possible, while still getting the necessary information to answer the question. Pay attention to deliberately exclude any unnecessary pieces of data in the API call.
Question:{question}
API url:`
export const API_RESPONSE_RAW_PROMPT_TEMPLATE =
'Given this {api_response} response for {api_url}. use the given response to answer this {question}'
class GETApiChain_Chains implements INode {
label: string
name: string
version: number
type: string
icon: string
category: string
baseClasses: string[]
description: string
inputs: INodeParams[]
constructor() {
this.label = 'GET API Chain'
this.name = 'getApiChain'
this.version = 1.0
this.type = 'GETApiChain'
this.icon = 'get.svg'
this.category = 'Chains'
this.description = 'Chain to run queries against GET API'
this.baseClasses = [this.type, ...getBaseClasses(APIChain)]
this.inputs = [
{
label: 'Language Model',
name: 'model',
type: 'BaseLanguageModel'
},
{
label: 'API Documentation',
name: 'apiDocs',
type: 'string',
description:
'Description of how API works. Please refer to more <a target="_blank" href="https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/chains/api/open_meteo_docs.py">examples</a>',
rows: 4
},
{
label: 'Headers',
name: 'headers',
type: 'json',
additionalParams: true,
optional: true
},
{
label: 'URL Prompt',
name: 'urlPrompt',
type: 'string',
description: 'Prompt used to tell LLMs how to construct the URL. Must contains {api_docs} and {question}',
default: API_URL_RAW_PROMPT_TEMPLATE,
rows: 4,
additionalParams: true
},
{
label: 'Answer Prompt',
name: 'ansPrompt',
type: 'string',
description:
'Prompt used to tell LLMs how to return the API response. Must contains {api_response}, {api_url}, and {question}',
default: API_RESPONSE_RAW_PROMPT_TEMPLATE,
rows: 4,
additionalParams: true
}
]
}
async init(nodeData: INodeData): Promise<any> {
const model = nodeData.inputs?.model as BaseLanguageModel
const apiDocs = nodeData.inputs?.apiDocs as string
const headers = nodeData.inputs?.headers as string
const urlPrompt = nodeData.inputs?.urlPrompt as string
const ansPrompt = nodeData.inputs?.ansPrompt as string
const chain = await getAPIChain(apiDocs, model, headers, urlPrompt, ansPrompt)
return chain
}
async run(nodeData: INodeData, input: string, options: ICommonObject): Promise<string> {
const model = nodeData.inputs?.model as BaseLanguageModel
const apiDocs = nodeData.inputs?.apiDocs as string
const headers = nodeData.inputs?.headers as string
const urlPrompt = nodeData.inputs?.urlPrompt as string
const ansPrompt = nodeData.inputs?.ansPrompt as string
const chain = await getAPIChain(apiDocs, model, headers, urlPrompt, ansPrompt)
const loggerHandler = new ConsoleCallbackHandler(options.logger)
const callbacks = await additionalCallbacks(nodeData, options)
const shouldStreamResponse = options.shouldStreamResponse
const sseStreamer: IServerSideEventStreamer = options.sseStreamer as IServerSideEventStreamer
const chatId = options.chatId
if (shouldStreamResponse) {
const handler = new CustomChainHandler(sseStreamer, chatId)
const res = await chain.run(input, [loggerHandler, handler, ...callbacks])
return res
} else {
const res = await chain.run(input, [loggerHandler, ...callbacks])
return res
}
}
}
const getAPIChain = async (documents: string, llm: BaseLanguageModel, headers: string, urlPrompt: string, ansPrompt: string) => {
const apiUrlPrompt = new PromptTemplate({
inputVariables: ['api_docs', 'question'],
template: urlPrompt ? urlPrompt : API_URL_RAW_PROMPT_TEMPLATE
})
const apiResponsePrompt = new PromptTemplate({
inputVariables: ['api_docs', 'question', 'api_url', 'api_response'],
template: ansPrompt ? ansPrompt : API_RESPONSE_RAW_PROMPT_TEMPLATE
})
const chain = APIChain.fromLLMAndAPIDocs(llm, documents, {
apiUrlPrompt,
apiResponsePrompt,
verbose: process.env.DEBUG === 'true',
headers: typeof headers === 'object' ? headers : headers ? JSON.parse(headers) : {}
})
return chain
}
module.exports = { nodeClass: GETApiChain_Chains }