You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: _sources/index.rst
+12-8
Original file line number
Diff line number
Diff line change
@@ -71,25 +71,29 @@ Contributing
71
71
References
72
72
###############
73
73
74
-
1. Singh, S. G. & Acerbi, L. (2023). PyBADS: Fast and robust black-box optimization in Python. *arXiv preprint*. https://arxiv.org/abs/2306.15576.
74
+
1. Singh, S. G. & Acerbi, L. (2024). PyBADS: Fast and robust black-box optimization in Python. Journal of Open Source Software, 9(94), 5694. (`paper on JOSS <https://doi.org/10.21105/joss.05694>`__).
75
75
76
76
2. Acerbi, L. & Ma, W. J. (2017). Practical Bayesian Optimization for Model Fitting with Bayesian Adaptive Direct Search. In *Advances in Neural Information Processing Systems 31*: 8222-8232. (`paper + supplement on arXiv <https://arxiv.org/abs/1705.04405>`__, `NeurIPS Proceedings <https://papers.nips.cc/paper/2017/hash/df0aab058ce179e4f7ab135ed4e641a9-Abstract.html>`__)
77
77
78
78
Please cite both references if you use PyBADS in your work (the 2017 paper introduced the framework, and the latest one is its Python library). You can cite PyBADS in your work with something along the lines of
79
79
80
-
We optimized the log likelihoods of our models using Bayesian adaptive direct search (BADS; Acerbi and Ma, 2017), via the PyBADS software (Singh and Acerbi, 2023). PyBADS alternates between a series of fast, local Bayesian optimization steps and a systematic, slower exploration of a mesh grid.
80
+
We optimized the log likelihoods of our models using Bayesian adaptive direct search (BADS; Acerbi and Ma, 2017), via the PyBADS software (Singh and Acerbi, 2024). PyBADS alternates between a series of fast, local Bayesian optimization steps and a systematic, slower exploration of a mesh grid.
81
81
82
82
BibTeX
83
83
------
84
84
::
85
-
@article{singh2023pybads,
85
+
86
+
@article{singh2024pybads,
86
87
title={{PyBADS}: {F}ast and robust black-box optimization in {P}ython},
“PyBADS: Fast and robust black-box optimization in Python”.
514
+
Journal of Open Source Software, 9(94), 5694, <aclass="reference external" href="https://doi.org/10.21105/joss.05694">https://doi.org/10.21105/joss.05694</a>.</p>
Copy file name to clipboardexpand all lines: index.html
+25-26
Original file line number
Diff line number
Diff line change
@@ -496,39 +496,38 @@ <h2>Contributing<a class="headerlink" href="#contributing" title="Link to this h
496
496
<sectionid="references">
497
497
<h2>References<aclass="headerlink" href="#references" title="Link to this heading">#</a></h2>
498
498
<olclass="arabic simple">
499
-
<li><p>Singh, S. G. & Acerbi, L. (2023). PyBADS: Fast and robust black-box optimization in Python. <em>arXiv preprint</em>. <aclass="reference external" href="https://arxiv.org/abs/2306.15576">https://arxiv.org/abs/2306.15576</a>.</p></li>
499
+
<li><p>Singh, S. G. & Acerbi, L. (2024). PyBADS: Fast and robust black-box optimization in Python. Journal of Open Source Software, 9(94), 5694. (<aclass="reference external" href="https://doi.org/10.21105/joss.05694">paper on JOSS</a>).</p></li>
500
500
<li><p>Acerbi, L. & Ma, W. J. (2017). Practical Bayesian Optimization for Model Fitting with Bayesian Adaptive Direct Search. In <em>Advances in Neural Information Processing Systems 31</em>: 8222-8232. (<aclass="reference external" href="https://arxiv.org/abs/1705.04405">paper + supplement on arXiv</a>, <aclass="reference external" href="https://papers.nips.cc/paper/2017/hash/df0aab058ce179e4f7ab135ed4e641a9-Abstract.html">NeurIPS Proceedings</a>)</p></li>
501
501
</ol>
502
502
<p>Please cite both references if you use PyBADS in your work (the 2017 paper introduced the framework, and the latest one is its Python library). You can cite PyBADS in your work with something along the lines of</p>
503
503
<blockquote>
504
-
<div><p>We optimized the log likelihoods of our models using Bayesian adaptive direct search (BADS; Acerbi and Ma, 2017), via the PyBADS software (Singh and Acerbi, 2023). PyBADS alternates between a series of fast, local Bayesian optimization steps and a systematic, slower exploration of a mesh grid.</p>
504
+
<div><p>We optimized the log likelihoods of our models using Bayesian adaptive direct search (BADS; Acerbi and Ma, 2017), via the PyBADS software (Singh and Acerbi, 2024). PyBADS alternates between a series of fast, local Bayesian optimization steps and a systematic, slower exploration of a mesh grid.</p>
505
505
</div></blockquote>
506
506
<sectionid="bibtex">
507
507
<h3>BibTeX<aclass="headerlink" href="#bibtex" title="Link to this heading">#</a></h3>
508
-
<dl>
509
-
<dt>::</dt><dd><dlclass="simple">
510
-
<dt>@article{singh2023pybads,</dt><dd><p>title={{PyBADS}: {F}ast and robust black-box optimization in {P}ython},
0 commit comments