-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
52 lines (41 loc) · 1.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
from torch_geometric.datasets import Planetoid
from torch_geometric.utils import train_test_split_edges
from torch.utils.tensorboard import SummaryWriter
from torch_geometric.nn.models import InnerProductDecoder
from .graph_autoencoder import BN_GAE, BGCNEncoder
import torch_geometric.transforms as T
def bn_train():
model.train()
optimizer.zero_grad()
z = model.encode(x, train_pos_edge_index)
loss_dict = model.recon_loss(z, train_pos_edge_index, x,nb_samples=3 )
kl_loss = loss_dict["total_pw"] - loss_dict["total_qw"]
loss = 10 * loss_dict["loss"] + 1*kl_loss / len(x) # the multiplying factors are just hyperparameters
loss.backward()
optimizer.step()
return loss
def test(pos_edge_index, neg_edge_index):
model.eval()
with torch.no_grad():
z = model.encode(x, train_pos_edge_index)
return model.test(z, pos_edge_index, neg_edge_index)
dataset = Planetoid("\..", "CiteSeer", transform=T.NormalizeFeatures())
data = dataset[0]
data.train_mask = data.val_mask = data.test_mask = data.y = None
data = train_test_split_edges(data)
writer=SummaryWriter("./logs/BGAE")
out_channels = 2
num_features = dataset.num_features
model = BN_GAE(encoder=BGCNEncoder(num_features,out_channels),decoder = InnerProductDecoder())
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
x = data.x.to(device)
train_pos_edge_index = data.train_pos_edge_index.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(1, 100):
loss = bn_train()
auc, ap = test(data.test_pos_edge_index, data.test_neg_edge_index)
writer.add_scalar("loss",loss,global_step=epoch,new_style=True)
writer.add_scalar("auc",auc,global_step=epoch,new_style=True)
writer.add_scalar("ap",ap,global_step=epoch,new_style=True)