-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnoise.py
41 lines (34 loc) · 1.26 KB
/
noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
class Noise(object):
def __init__(self, delta, sigma, ou_a, ou_mu):
# Noise parameters
self.delta = delta
self.sigma = sigma
self.ou_a = ou_a
self.ou_mu = ou_mu
print(self.__dict__)
def brownian_motion_log_returns(self):
sqrt_delta_sigma = np.sqrt(self.delta) * self.sigma
return np.random.normal(loc=0, scale=sqrt_delta_sigma, size=None)
def ornstein_uhlenbeck_level(self, prev_ou_level):
drift = self.ou_a * (self.ou_mu - prev_ou_level) * self.delta
randomness = self.brownian_motion_log_returns()
return prev_ou_level + drift + randomness
if __name__ == "__main__":
from train import load_config
config = load_config("config_g2g.yaml")
noise_params = {k: np.array(list(map(float, v.split(","))))
for k, v in config["noise_params"].items()}
noise = Noise(**noise_params)
ou_lvl = np.zeros(2)
v = []
for i in range(1000000):
# print(ou_lvl)
ou_lvl = noise.ornstein_uhlenbeck_level(ou_lvl)
v.append(ou_lvl)
if (i+1) % 50 == 0:
ou_lvl = np.zeros(2)
import matplotlib.pyplot as plt
l, a = list(zip(*v))
plt.hist(a, np.linspace(-1.5, 1.5, 300))
plt.show()