-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
122 lines (104 loc) · 4.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# ---------------- COVIDNet-CXR-Shuffle -------------------- #
import torch
import torchvision
import numpy as np
import utils
import torch.utils.data
torch.manual_seed(42)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'[INFO] Using {device} to train the model')
# ---------- INPUTS ----------
model_path = 'models/covidnet-cxr-shuffle-model.pth'
data_path = 'data/trainset'
epochs = 20
batch_size = 32
# inits
train_losses = []
val_losses = []
val_accs = []
cur_epoch = 0
best_acc = 0
# ---------- DATA LOADING AND AUGMENTATIONS ----------
trn_trans = torchvision.transforms.Compose([
utils.RemoveScanInfo(),
torchvision.transforms.Resize((224,224)),
utils.HistogramNorm(),
torchvision.transforms.RandomOrder([
torchvision.transforms.RandomAffine(degrees=(-45,45), translate=(0.1,0.1), scale=(0.9,1.1)),
torchvision.transforms.RandomHorizontalFlip(p=0.5),
torchvision.transforms.RandomVerticalFlip(p=0.5),
]),
torchvision.transforms.ToTensor(),
torchvision.transforms.RandomErasing(p=0.2, scale=(0.003, 0.03))
])
val_trans = torchvision.transforms.Compose([
utils.RemoveScanInfo(),
torchvision.transforms.Resize((224,224)),
utils.HistogramNorm(),
torchvision.transforms.ToTensor(),
])
train_set = torchvision.datasets.ImageFolder(data_path + '/trnb/', transform = trn_trans)
val_set = torchvision.datasets.ImageFolder(data_path + '/valb/', transform = val_trans)
train_loader = torch.utils.data.DataLoader(dataset=train_set, batch_size=batch_size, shuffle=True)
val_loader = torch.utils.data.DataLoader(dataset=val_set, batch_size=batch_size, shuffle=True)
# ---------- DL MODEL ARCH ----------
model = torchvision.models.shufflenet_v2_x1_0(pretrained=True)
model.fc = torch.nn.Linear(1024, 3)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
adjustLR = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=1e-5, max_lr=1e-3, mode='exp_range', cycle_momentum=False)
ce_loss = torch.nn.CrossEntropyLoss()
# --- RESTORE CHECKPOINTS ----
# checkpoint = torch.load(model_path)
# model.load_state_dict(checkpoint['model_state_dict'])
# cur_epoch = checkpoint['epochs'] - 1
# best_acc = checkpoint['best_acc']
# --- TRAIN FOR-LOOP ----
for e in range(epochs):
e += cur_epoch + 1
running_loss = 0
for i, (inputs, targets) in enumerate(train_loader):
model = model.to(device)
model = model.train()
x = inputs.to(device)
y = targets.to(device)
optimizer.zero_grad()
outputs = model(x)
loss = ce_loss(outputs, y)
loss.backward()
optimizer.step()
adjustLR.step()
running_loss += loss.item()
else:
val_loss = 0
val_acc = 0
batch_correct = 0
batch_total = 0
with torch.no_grad():
model = model.eval()
for i, (inputs, targets) in enumerate(val_loader):
x = inputs.to(device)
y = targets.to(device)
outputs = model(x)
loss = ce_loss(outputs, y)
val_loss += loss.item()
batch_total += y.size(0)
_, predicted = torch.max(outputs.data, 1)
batch_correct += (predicted == y).sum().item()
val_acc = batch_correct / batch_total
val_accs.append( val_acc )
val_losses.append(val_loss / len(val_loader))
train_losses.append(running_loss / len(train_loader) )
if val_accs[-1] >= best_acc:
best_acc = val_accs[-1]
torch.save({
'model': model.train(),
'epochs': e,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'best_acc': best_acc}, model_path)
print ('Epochs: {}/{} '.format(e, epochs),
'Train Loss: {:.7f} '.format(train_losses[-1]),
'Val Loss: {:.7f} '.format(val_losses[-1]),
'Val Acc: {:.7f}'.format(val_accs[-1]),
'Best Val Acc: {:.7f}'.format(best_acc))
print('[INFO] Model training is complete.')