-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_callbacks.py
46 lines (35 loc) · 1.52 KB
/
custom_callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from keras.callbacks import Callback
from sklearn.metrics import precision_recall_fscore_support
class Metrics(Callback):
def on_train_begin(self, logs={}):
self.valFMeasureHistory = []
self.valRecallHistory = []
self.valPrecisionHistory = []
self.bestFMeasure = 0
def on_epoch_end(self, epoch, logs={}):
valPredictedLabels = self.model.predict(
[self.validation_data[0], self.validation_data[1]])
valLabels = self.validation_data[2]
valPredictedBinaryLabels = valPredictedLabels.argmax(axis=1)
valBinaryLabels = valLabels.argmax(axis=1)
valPrecision, valRecall, valFMeasure, _ = precision_recall_fscore_support(
valBinaryLabels, valPredictedBinaryLabels, average='binary')
if valFMeasure is None:
valFMeasure = 0.0
if valFMeasure > self.bestFMeasure:
print('Updating best model')
print('Current best model comes from epoch {}'.format(str(epoch)))
self.bestFMeasure = valFMeasure
self.model.save('best-model.h5')
self.valFMeasureHistory.append(valFMeasure)
self.valRecallHistory.append(valRecall)
self.valPrecisionHistory.append(valPrecision)
valMessageFmt = "val_f1:{}\tval_precision: {}\tval_recall: {}"
print(
valMessageFmt.format(
round(
valFMeasure, 2), round(
valPrecision, 2), round(
valRecall, 2)))
print()
return