-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathhack_model.py
215 lines (153 loc) · 7.23 KB
/
hack_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import numpy as np
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
import json
import roma
import helper
bones = json.load(open("model/bones_neutral.json"))
bone_names = list(bones.keys())
obj_template = helper.read_obj(r"model/000_generic_neutral_mesh_newuv.obj")
for name in bones:
bone = bones[name]
parent = bone["parent"]
L2P_rotation = np.array(bone["matrix"])
head_in_p = (np.array(bone["head"]) + ([0, bones[parent]["length"], 0] if parent is not None else 0))
L2P_transformation = np.identity(4)
L2P_transformation[:3, :3] = L2P_rotation
L2P_transformation[:3, 3] = head_in_p
bone["L2P_transformation"] = torch.tensor(L2P_transformation, dtype=torch.float32)
def update_L2W_transformation(name):
bone = bones[name]
transformation_name = "L2W_transformation"
local_pose_transformation = torch.eye(4)[None]
if transformation_name in bone:
return bone[transformation_name]
parent = bone["parent"]
L2W_transformation = bone["L2P_transformation"] @ local_pose_transformation
if parent is not None:
L2W_transformation = update_L2W_transformation(parent) @ L2W_transformation
bone[transformation_name] = L2W_transformation
return L2W_transformation
def update_L2W_transformation_pose(L2W_transformation_pose, L2P_transformation, ith_bone, pose_matrix):
"""
L2W_transformation_pose: list of N_bones
"""
name = bone_names[ith_bone]
bone = bones[name]
if L2W_transformation_pose[ith_bone] is not None:
return L2W_transformation_pose[ith_bone]
local_pose_transformation = torch.eye(4, device=pose_matrix.device)[None].repeat(pose_matrix.shape[0], 1, 1)
local_pose_transformation[:, :3, :3] = pose_matrix[:, bone_names.index(name)]
L2W_transformation = L2P_transformation[ith_bone] @ local_pose_transformation
parent = bone["parent"]
if parent is not None:
ith_parent = bone_names.index(parent)
L2W_transformation = update_L2W_transformation_pose(L2W_transformation_pose, L2P_transformation, ith_parent, pose_matrix) @ L2W_transformation
L2W_transformation_pose[ith_bone] = L2W_transformation
return L2W_transformation_pose[ith_bone]
N_bones = 8
L2P_transformation = torch.stack([bones[bone_names[i]]["L2P_transformation"] for i in range(len(bone_names))])
L2W_transformation = torch.zeros(1, N_bones, 4, 4) # [1, Nb, 4, 4]
for name in bones:
L2W_transformation[:, bone_names.index(name)] = update_L2W_transformation(name)
W2L_transformation = torch.linalg.inv(L2W_transformation)
"""
^^^ CONSTANT ^^
"""
def uv1d_construct_delta(uv1d, tau):
"""
uv1d: [1, 1, 256, 256]
tau: [B, 1]
return: [B, 14062, 1]
"""
grid = getattr(uv1d_construct_delta, "grid", None)
if grid is None:
obj = obj_template
uv = obj.vts
uv[:, 1] = 1 - uv[:, 1]
uv = uv * 2 - 1
fv = obj.fvs
fvt = obj.fvts
grid = np.ones((1, 1, 14062, 2)) * 2
for i in range(len(fv)):
for j in range(4):
if grid[0][0][fv[i][j]][0] == 2:
grid[0][0][fv[i][j]] = uv[fvt[i][j]]
else:
continue
grid = torch.tensor(grid).to(uv1d)
setattr(uv1d_construct_delta, "grid", grid)
grid = grid + F.pad(tau * 2, [1, 0])[:, None, None, :]
output = torch.nn.functional.grid_sample(uv1d.expand(grid.shape[0], -1, -1, -1), grid, mode='bilinear', padding_mode="border", align_corners=True)
return output[:, 0, 0, :, None]
class PCA(nn.Module):
def __init__(self, mean, diff):
super().__init__()
self.register_buffer("mean", torch.tensor(mean[None]).to(torch.float32))
self.register_buffer("diff", torch.tensor(diff[None]).to(torch.float32))
def forward(self, a=None, clip=999):
if a is None:
return self.mean
return self.mean + (a.reshape([a.shape[0], a.shape[1]] + [1] * (len(self.diff.shape) - 2)) * self.diff)[:, :clip].sum(dim=1)
def load_pca(path):
pca = np.load(path, allow_pickle=True).item()
mean = pca["mean"]
VT_std = pca["VT_std"]
pca = PCA(mean, VT_std)
return pca
class HACK(nn.Module):
def __init__(self):
super().__init__()
W = torch.tensor(np.load("model/weight_map_smooth.npy"), dtype=torch.float32) # [Nb, 14062]
W = W / W.sum(axis=0, keepdims=True)
self.register_buffer("W", W, persistent=False)
T = torch.tensor(obj_template.vs, dtype=torch.float32) # [14062, 3]
self.register_buffer("T", T)
P = torch.zeros(N_bones, 3, 3, 14062, 3) # [N_bones, 3, 3, 14062, 3]
self.register_buffer("P", P)
L = torch.tensor(cv2.imread("model/Lc_mid.png", cv2.IMREAD_GRAYSCALE) / 255, dtype=torch.float32)[None, None] # [1, 1, 256, 256]
self.register_buffer("L", L, persistent=False)
ts = torch.tensor(np.load("model/ts_larynx.npy"), dtype=torch.float32) # [3]
self.register_buffer("ts", ts, persistent=False)
self.register_buffer("L2P_transformation", L2P_transformation, persistent=False)
self.register_buffer("W2L_transformation", W2L_transformation, persistent=False)
blendshapes = torch.tensor(np.load("model/blendshape.npy"), dtype=torch.float32)
neutral = blendshapes[:1]
blendshapes = blendshapes[1:] - neutral
self.register_buffer("E", blendshapes, persistent=False)
def get_L_tau(self, tau):
"""
tau>0 means upper
"""
dist = uv1d_construct_delta(self.L, tau)
L_tau = dist * self.ts
return L_tau
def forward(self, theta, tau, alpha, bsw, T=None, P=None, E=None):
"""
theta: [B, Nb, 3]
tau: [B, 1]
alpha: [B, 1]
bsw: [B, 55]
return: [B, Nv, 3]
"""
B = theta.shape[0]
theta_matrix = roma.rotvec_to_rotmat(theta) # [B, Nb, 3, 3]
theta_matrix_zero = theta_matrix - torch.cat([theta_matrix[:, :1], (torch.eye(3).to(theta)[None, None]).expand(B, N_bones - 1, 3, 3)], dim=1)
P = self.P if P is None else P
P_theta = (theta_matrix_zero[:, :, :, :, None, None] * P).sum(dim=(1, 2, 3))
L2W_transformation_pose = [None] * N_bones
for ith_bone in range(len(bone_names)):
update_L2W_transformation_pose(L2W_transformation_pose, self.L2P_transformation, ith_bone, theta_matrix)
L2W_transformation_pose = torch.stack(L2W_transformation_pose, dim=1) # [B, Nb, 4, 4]
W2L2pWs = L2W_transformation_pose @ self.W2L_transformation # [B, Nb, 4, 4]
W2L2pW_weighted = (W2L2pWs[:, :, None, :, :] * self.W[None, :, :, None, None]).sum(axis=1) # [B, 14062, 4, 4]
T = self.T if T is None else T
E = self.E if E is None else E
T_theta = T + P_theta + (E[:, :, :] * bsw[:, :, None, None]).sum(dim=1) + self.get_L_tau(tau) * alpha[:, :, None]
T_transformed = (W2L2pW_weighted @ F.pad(T_theta, [0, 1], value=1)[:, :, :, None])[:, :, :3, 0] # [B, 14062, 3]
data = {
"T_transformed": T_transformed,
}
return data