-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain_multi.py
199 lines (157 loc) · 7.09 KB
/
train_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
'''
This script handling the multi-gpu training process.
'''
import os
import argparse
import yaml
import time
import torch
import torch.nn as nn
import numpy as np
import horovod.torch as hvd
import torch.utils.data
import torch.utils.data.distributed
from Dataset import AudioDateset
from transformer.Models import Transformer
from transformer.Utils import AttrDict, init_logger, count_parameters, save_model, init_parameters
from tensorboardX import SummaryWriter
hvd.init()
# Horovod: average metrics from distributed training.
class Metric(object):
def __init__(self, name):
self.name = name
self.sum = torch.tensor(0.)
self.n = torch.tensor(0.)
def update(self, val):
val = torch.tensor(val)
self.sum += hvd.allreduce(val, name=self.name)
self.n += 1
@property
def avg(self):
return self.sum / self.n
def train(epoch, model, crit, optimizer, train_loader, train_sampler, logger, visualizer, config):
global global_step
model.train()
train_sampler.set_epoch(epoch)
start_epoch = time.clock()
train_loss = Metric('train_loss')
batch_step = len(train_loader)
for step, (inputs, targets, input_lengths, target_lengths, groud_truth) in enumerate(train_loader):
global_step += 1
inputs, targets, groud_truth = inputs.cuda(), targets.cuda(), groud_truth.cuda()
input_lengths, target_lengths = input_lengths.cuda(), target_lengths.cuda()
max_inputs_length = input_lengths.max().item()
max_targets_length = target_lengths.max().item()
inputs = inputs[:, :max_inputs_length, :]
targets = targets[:, :max_targets_length]
groud_truth = groud_truth[:, :max_targets_length]
optimizer.zero_grad()
start = time.clock()
logits, _ = model(inputs, input_lengths, targets, target_lengths)
loss = crit(logits.contiguous().view(-1, config.model.vocab_size), groud_truth.contiguous().view(-1))
train_loss.update(loss.item())
loss.backward()
grad_norm = nn.utils.clip_grad_norm_(model.parameters(), config.training.max_grad_norm)
lr = update_lr(config, optimizer, global_step)
optimizer.step()
if step % config.training.show_interval == 0 and hvd.rank() == 0:
end = time.clock()
process = 100.0 * step / len(train_loader)
logger.info('-Training-Epoch:%d, Step:%d / %d (%.4f), Learning Rate:%.6f, Grad Norm:%.5f, RNNTLoss:%.5f, Run Time:%.3f' %
(epoch, step, batch_step, process, lr, grad_norm, loss.item(), end-start))
if visualizer is not None:
visualizer.add_scalar('train_loss', loss.item(), global_step)
if hvd.rank() == 0:
end_epoch = time.clock()
logger.info('-Training-Epoch:%d, AverageRNNTLoss:%.5f, Run Time:%.5f' % (epoch, train_loss.avg, end_epoch-start_epoch))
def update_lr(config, optimizer, step):
d_model = config.model.d_model
lr = np.power(d_model, -0.5) * np.min([
np.power(step, -0.5),
np.power(config.optimizer.n_warmup_steps, -1.5) * step])
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def main():
''' Main function '''
parser = argparse.ArgumentParser()
parser.add_argument('-config', type=str, default='config/rnnt.yaml')
parser.add_argument('-load_model', type=str, default=None)
parser.add_argument('-fp16_allreduce', action='store_true', default=False,
help='use fp16 compression during allreduce')
parser.add_argument('-batches_per_allreduce', type=int, default=1,
help='number of batches processed locally before '
'executing allreduce across workers; it multiplies '
'total batch size.')
parser.add_argument('-num_wokers', type=int, default=0,
help='how many subprocesses to use for data loading. '
'0 means that the data will be loaded in the main process')
parser.add_argument('-log', type=str, default='train.log')
opt = parser.parse_args()
configfile = open(opt.config)
config = AttrDict(yaml.load(configfile))
global global_step
global_step = 0
if hvd.rank() == 0:
exp_name = config.data.name
if not os.path.isdir(exp_name):
os.mkdir(exp_name)
logger = init_logger(exp_name + '/' + opt.log)
else:
logger = None
if torch.cuda.is_available():
torch.cuda.set_device(hvd.local_rank())
torch.cuda.manual_seed(config.training.seed)
torch.backends.cudnn.deterministic = True
else:
raise NotImplementedError
#========= Build DataLoader =========#
train_dataset = AudioDateset(config.data, 'train')
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=config.data.train.batch_size, sampler=train_sampler)
assert train_dataset.vocab_size == config.model.vocab_size
#========= Build A Model Or Load Pre-trained Model=========#
model = Transformer(config.model)
if hvd.rank() == 0:
n_params, enc_params, dec_params = count_parameters(model)
logger.info('# the number of parameters in the whole model: %d' % n_params)
logger.info('# the number of parameters in encoder: %d' % enc_params)
logger.info('# the number of parameters in decoder: %d' % dec_params)
model.cuda()
# define an optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=lr, betas=(0.9, 0.98), eps=1e-9)
# Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16 if opt.fp16_allreduce else hvd.Compression.none
optimizer = hvd.DistributedOptimizer(
optimizer, named_parameters=model.named_parameters(),
compression=compression)
# load pretrain model
if opt.load_model is not None and hvd.rank() == 0:
checkpoint = torch.load(opt.load_model)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger.info('Load pretrainded Model and previous Optimizer!')
elif hvd.rank() == 0:
init_parameters(model)
logger.info('Initialized all parameters!')
# Horovod: broadcast parameters & optimizer state.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
# define loss function
crit = nn.CrossEntropyLoss(ignore_index=0)
# create a visualizer
if config.training.visualization and hvd.rank() == 0:
visualizer = SummaryWriter(exp_name + '/log')
logger.info('Created a visualizer.')
else:
visualizer = None
for epoch in range(config.training.epoches):
train(epoch, model, crit, optimizer, train_loader, train_sampler, logger, visualizer, config)
if hvd.rank() == 0:
save_model(epoch, model, optimizer, config, logger)
if hvd.rank() == 0:
logger.info('Traing Process Finished')
if __name__ == '__main__':
main()