-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathutils.py
76 lines (62 loc) · 2.67 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# -*- coding: utf-8 -*-
"""
Created on Sat Nov 18 12:25:51 2017
@author: Yuxian Meng
"""
import argparse
import torch
from torchvision import datasets, transforms
#TODO: data augmentation
#def augmentation(x, max_shift=2):
# _, _, height, width = x.size()
#
# h_shift, w_shift = np.random.randint(-max_shift, max_shift + 1, size=2)
# source_height_slice = slice(max(0, h_shift), h_shift + height)
# source_width_slice = slice(max(0, w_shift), w_shift + width)
# target_height_slice = slice(max(0, -h_shift), -h_shift + height)
# target_width_slice = slice(max(0, -w_shift), -w_shift + width)
#
# shifted_image = torch.zeros(*x.size())
# shifted_image[:, :, source_height_slice, source_width_slice] = x[:, :,
# target_height_slice, target_width_slice]
# return shifted_image.float()
def get_dataloader(args):
# MNIST Dataset
train_dataset = datasets.MNIST(root='./data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = datasets.MNIST(root='./data/',
train=False,
transform=transforms.ToTensor())
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=args.batch_size,
shuffle=True)
return train_loader, test_loader
def get_args():
parser = argparse.ArgumentParser(description='CapsNet')
parser.add_argument('-batch_size', type=int, default=128)
parser.add_argument('-num_epochs', type=int, default=1)
parser.add_argument('-lr', type=float, default=2e-2)
parser.add_argument('-clip', type=float, default=5)
parser.add_argument('-r', type=int, default=3)
parser.add_argument('-disable_cuda', action='store_true',
help='Disable CUDA')
parser.add_argument('-print_freq', type=int, default=10)
parser.add_argument('-pretrained', type=str, default="")
parser.add_argument('-gpu', type=int, default=0, help = "which gpu to use")
args = parser.parse_args()
args.use_cuda = not args.disable_cuda and torch.cuda.is_available()
return args
if __name__ == "__main__":
args = get_args()
loader,_ = get_dataloader(args)
print(len(loader.dataset))
for data in loader:
x,y = data
print(x[0,0,:,:])
break