-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathjeep.yaml
56 lines (47 loc) · 1.57 KB
/
jeep.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# CUDA_VISIBLE_DEVICES=0 python ContextDiff_finetune.py --config config/jeep.yaml
pretrained_model_path: "ckpt/stable-diffusion-v1-5"
dataset_config:
path: "data/jeep"
prompt: "a silver jeep driving down a curvy road in the countryside,"
n_sample_frame: 8
# n_sample_frame: 22
# class_data_root: "data/car"
# class_data_prompt: "a photo of a car"
sampling_rate: 1
stride: 80
offset:
left: 0
right: 0
top: 0
bottom: 0
editing_config:
use_invertion_latents: True
use_inversion_attention: True
guidance_scale: 7.5
editing_prompts: [
a silver jeep driving down a curvy road in the countryside,
a Porsche car driving down a curvy road in the countryside,
a silver jeep driving down a curvy road in the countryside covered with snow,
]
clip_length: "${..dataset_config.n_sample_frame}"
sample_seeds: [12734]
num_inference_steps: 50 # 15 minutes
strength: 0.99
trainer_pipeline_config:
target: video_diffusion.trainer.ddpm_trainer.DDPMTrainer
test_pipeline_config:
target: video_diffusion.pipelines.ddim_spatial_temporal.DDIMSpatioTemporalStableDiffusionPipeline
model_config:
lora: 160
# temporal_downsample_time: 4
# SparseCausalAttention_index: [-1, 1, 'first', 'last']
enable_xformers: True
mixed_precision: 'fp16'
gradient_checkpointing: True
train_steps: 200
validation_steps: 50
checkpointing_steps: 50
seed: 0
learning_rate: 1e-5
# prior_preservation: 1.0
train_temporal_conv: True