-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
216 lines (190 loc) · 7.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import warnings
warnings.filterwarnings('ignore', category=DeprecationWarning)
import os
from pathlib import Path
import numpy as np
import torch
import torchvision.transforms as transforms
from torch.utils.tensorboard import SummaryWriter
import collections
from tqdm.auto import tqdm
import psutil
from sac import SAC
from replay_buffer_np import ReplayBuffer
import gymnasium as gym
from gymnasium.wrappers import PixelObservationWrapper, RecordEpisodeStatistics
from wrappers import ActionRepeat, FrameStack, VideoRecorder, CustomObservation
import gym_INB0104
from gymnasium.spaces import Box, Dict
class dinov2_obs(gym.ObservationWrapper):
# Embed image using Dinov2
def __init__(self, env):
super().__init__(env)
self.device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
self.model =torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14').to(self.device)
self.model.eval()
self._embedding_shape = self.model.embed_dim
self._state_shape = env.observation_space['state'].shape
for param in self.model.parameters():
param.requires_grad = False
self.transform = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
self.observation_space = Dict({"state": Box(low=-np.inf, high=np.inf, shape=self._state_shape, dtype=np.float32),
"embeddings": Box(low=-np.inf, high=np.inf, shape=(self.model.embed_dim,), dtype=np.float32)})
def observation(self, obs):
pixels = obs['pixels']
pixels = self.transform(pixels)
pixels = pixels.unsqueeze(0).to(self.device)
features = self.model(pixels)
obs['embeddings'] = features[0].cpu().numpy()
return obs
class Workspace:
def __init__(self):
self.device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
self.num_gpus = torch.cuda.device_count()
cwd = os.getcwd()
workdir = Path.cwd()
self.work_dir = workdir
tb_path = os.path.join(cwd, 'tb')
cp_path = os.path.join(cwd, 'checkpoints')
os.makedirs(tb_path, exist_ok=True)
os.makedirs(cp_path, exist_ok=True)
self.writer = SummaryWriter(log_dir=tb_path)
self.frame_stack = 3
self.action_repeat = 2
self._global_step = 0
self._global_episode = 0
self.ep_len = 500
self.setup()
def setup(self):
self.env = self.create_environment(name="gym_INB0104/INB0104-v0",frame_stack=self.frame_stack, action_repeat=self.action_repeat)
self.eval_env = self.create_environment(name="gym_INB0104/INB0104-v0", frame_stack=self.frame_stack, action_repeat=self.action_repeat, record=True)
self.policy = SAC(self.device, self.env)
# create replay buffer
self.buffer = ReplayBuffer(
embs_shape = (self.env.observation_space['embeddings'].shape[-1],),
state_shape = (self.env.observation_space['state'].shape[-1],),
obs_frame_stack=self.frame_stack,
action_shape=self.env.action_space.shape,
batch_size=self.policy.batch_size,
num_eps=self.policy.capacity//self.ep_len,
ep_len=self.ep_len,
device=self.policy.device,
)
def create_environment(self, name, frame_stack=3, action_repeat=2, record=False, video_dir="./eval_vids"):
env = gym.make(name, render_mode='rgb_array')
if action_repeat > 1:
env = ActionRepeat(env, action_repeat)
if record:
env = VideoRecorder(env, save_dir=video_dir, crop_resolution=480, resize_resolution=240)
env = PixelObservationWrapper(env, pixels_only=False)
env = CustomObservation(env, crop_resolution=480, resize_resolution=224)
env = dinov2_obs(env)
env = FrameStack(env, frame_stack)
return env
@property
def global_step(self):
return self._global_step
@property
def global_episode(self):
return self._global_episode
def evaluate(self):
"""Evaluate the policy and dump rollout videos to disk."""
self.policy.eval()
stats = collections.defaultdict(list)
total_reward = 0
for j in range(self.policy.num_eval_episodes):
observation, info = self.eval_env.reset()
embs = observation['embeddings']
states = observation['state']
states = states.astype(np.float32)
terminated = False
truncated = False
while not (terminated or truncated):
action = self.policy.act(embs.flatten(), states.flatten(), sample=False)
observation, reward, terminated, truncated, info = self.eval_env.step(action)
embs = observation['embeddings']
states = observation['state']
states = states.astype(np.float32)
total_reward += reward
end_reward = reward
# for k, v in info["episode"].items():
# stats[k].append(v)
stats["end_reward"].append(end_reward)
stats["episode_reward"].append(total_reward)
for k, v in stats.items():
stats[k] = np.mean(v)
return stats
def train(self):
try:
episode_step, episode_reward = 0, 0
observation, _ = self.env.reset()
embs = observation['embeddings']
states = observation['state']
states = states.astype(np.float32)
action = self.env.action_space.sample()
reward = -1.0
mask = 1.0
terminated = 0
truncated = 0
self.buffer.insert(embs[-1], states[-1], action, reward, mask)
for i in tqdm(range(self.policy.num_train_steps)):
if terminated or truncated:
if terminated:
mask = 0.0
else: mask = 1.0
self._global_episode += 1
self.writer.add_scalar("episode end reward", reward, i)
self.writer.add_scalar("episode return", episode_reward, i)
# Reset env
obs, _ = self.env.reset()
embs = obs['embeddings']
states = obs['state']
states = states.astype(np.float32)
episode_step = 0
episode_reward = 0
self.buffer.insert(embs[-1], states[-1], action, reward, mask)
# Evaluate
if i > self.policy.num_seed_steps and i % self.policy.eval_frequency == 0:
eval_stats = self.evaluate()
for k, v in eval_stats.items():
self.writer.add_scalar(f"eval {k}", v, i)
# Take action
if i < self.policy.num_seed_steps:
action = self.env.action_space.sample()
else:
action = self.policy.act(embs.flatten(), states.flatten(), sample=True)
# Update agent
if i >= self.policy.num_seed_steps:
train_info = self.policy.update(self.buffer, i)
if i % self.policy.log_frequency == 0:
if train_info is not None:
for k, v in train_info.items():
self.writer.add_scalar(k, v, i)
ram_usage = psutil.virtual_memory().percent
self.writer.add_scalar("ram usage", ram_usage, i)
# Take env step
obs, reward, terminated, truncated, info = self.env.step(action)
embs = obs['embeddings']
states = obs['state']
states = states.astype(np.float32)
if terminated:
mask=0.0
else:
mask=1.0
episode_reward += reward
episode_step += 1
self._global_step += 1
self.buffer.insert(embs[-1], states[-1], action, reward, mask)
except KeyboardInterrupt:
print("Caught keyboard interrupt. Saving before quitting.")
finally:
print(f"done?") # pylint: disable=undefined-loop-variable
def main():
workspace = Workspace()
workspace.train()
if __name__ == "__main__":
main()