-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathlogistic_regression.py
107 lines (76 loc) · 2.7 KB
/
logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# encoding=utf-8
# @Author: WenDesi
# @Date: 08-11-16
# @Email: wendesi@foxmail.com
# @Last modified by: WenDesi
# @Last modified time: 08-11-16
import time
import math
import random
import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
class LogisticRegression(object):
def __init__(self):
self.learning_step = 0.00001
self.max_iteration = 5000
def predict_(self,x):
wx = sum([self.w[j] * x[j] for j in xrange(len(self.w))])
exp_wx = math.exp(wx)
predict1 = exp_wx / (1 + exp_wx)
predict0 = 1 / (1 + exp_wx)
if predict1 > predict0:
return 1
else:
return 0
def train(self,features, labels):
self.w = [0.0] * (len(features[0]) + 1)
correct_count = 0
time = 0
while time < self.max_iteration:
index = random.randint(0, len(labels) - 1)
x = list(features[index])
x.append(1.0)
y = labels[index]
if y == self.predict_(x):
correct_count += 1
if correct_count > self.max_iteration:
break
continue
# print 'iterater times %d' % time
time += 1
correct_count = 0
wx = sum([self.w[i] * x[i] for i in xrange(len(self.w))])
exp_wx = math.exp(wx)
for i in xrange(len(self.w)):
self.w[i] -= self.learning_step * \
(-y * x[i] + float(x[i] * exp_wx) / float(1 + exp_wx))
def predict(self,features):
labels = []
for feature in features:
x = list(feature)
x.append(1)
labels.append(self.predict_(x))
return labels
if __name__ == "__main__":
print 'Start read data'
time_1 = time.time()
raw_data = pd.read_csv('../data/train_binary.csv',header=0)
data = raw_data.values
imgs = data[0::,1::]
labels = data[::,0]
# 选取 2/3 数据作为训练集, 1/3 数据作为测试集
train_features, test_features, train_labels, test_labels = train_test_split(imgs, labels, test_size=0.33, random_state=23323)
time_2 = time.time()
print 'read data cost ',time_2 - time_1,' second','\n'
print 'Start training'
lr = LogisticRegression()
lr.train(train_features, train_labels)
time_3 = time.time()
print 'training cost ',time_3 - time_2,' second','\n'
print 'Start predicting'
test_predict = lr.predict(test_features)
time_4 = time.time()
print 'predicting cost ',time_4 - time_3,' second','\n'
score = accuracy_score(test_labels,test_predict)
print "The accruacy socre is ", score