-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHillClimb.cpp
248 lines (213 loc) · 8.21 KB
/
HillClimb.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
* File: HillClimb.h
* Author: Varun Srivastava
*
*/
#include <algorithm>
#include <numeric>
#include <random>
#include <utility>
#include <chrono>
#include <iostream>
#include <cmath>
#include "HillClimb.h"
typedef std::chrono::high_resolution_clock Time;
typedef std::chrono::duration<double> double_seconds;
template <typename T>
void print2dvector(const std::vector<std::vector<T>> vec)
{
for (const auto &row : vec)
{
for (const auto &elem : row)
std::cout << elem << '\t';
std::cout << std::endl;
}
}
template <typename T>
void print1dvector(const std::vector<T> vec)
{
for (const auto &e : vec)
std::cout << e << '\t';
std::cout << std::endl;
}
HillClimb::HillClimb(double **matrix, int p, int t, int k, int c)
{
distance_matrix = matrix;
parallel_tracks = p;
sessions_in_track = t;
papers_in_session = k;
trade_of_coefficient = c;
dist = std::uniform_int_distribution<std::default_random_engine::result_type>(0, (papers_in_session * parallel_tracks * sessions_in_track) - 1);
}
void HillClimb::construct_session_matrix(State initial_state)
{
if (session_distance_matrix.empty())
{
session_distance_matrix.resize(sessions_in_track * parallel_tracks * papers_in_session);
for (auto &v : session_distance_matrix)
v.resize(parallel_tracks * sessions_in_track);
}
auto sessions = state_to_sessions(initial_state);
for (size_t i = 0; i != session_distance_matrix.size(); ++i)
{
for (size_t j = 0; j != sessions.size(); ++j)
{
auto dist = 0.0;
for (const auto &e : sessions[j])
{
dist += distance_matrix[i][e];
}
session_distance_matrix[i][j] = dist;
}
}
}
std::vector<std::vector<int>> HillClimb::state_to_sessions(State state)
{
std::vector<std::vector<int>> blocks;
for (auto it = state.cbegin(); it != state.cend(); it += papers_in_session)
blocks.push_back(std::vector<int>(it, it + papers_in_session));
return blocks;
}
State HillClimb::greedy_initialize()
{
return State();
}
State HillClimb::random_initialize()
{
State random_state(parallel_tracks * sessions_in_track * papers_in_session);
std::iota(random_state.begin(), random_state.end(), 0);
std::shuffle(random_state.begin(), random_state.end(), rng);
return random_state;
}
std::pair<int, int> HillClimb::next_state()
{
size_t cnt = 0;
int i, j;
do
{
i = dist(rng);
j = dist(rng);
cnt += 1;
} while (((i + papers_in_session) / papers_in_session) == ((j + papers_in_session) / papers_in_session) && cnt < 10);
return std::make_pair(i, j);
}
void HillClimb::update_state(int index_a, int index_b, State &state)
{
int a = state[index_a];
int b = state[index_b];
int n = parallel_tracks * sessions_in_track * papers_in_session;
state[index_a] = b;
state[index_b] = a;
int session_seq_a = ((index_a + papers_in_session) / papers_in_session) - 1;
int session_seq_b = ((index_b + papers_in_session) / papers_in_session) - 1;
for (int i = 0; i != n; ++i)
{
session_distance_matrix[i][session_seq_a] += distance_matrix[i][b] - distance_matrix[i][a];
session_distance_matrix[i][session_seq_b] += distance_matrix[i][a] - distance_matrix[i][b];
}
}
double HillClimb::score_increment(int index_a, int index_b, State state) const
{
double change = 0;
int a = state[index_a];
int b = state[index_b];
int session_seq_a = ((index_a + papers_in_session) / papers_in_session) - 1;
int session_seq_b = ((index_b + papers_in_session) / papers_in_session) - 1;
int papers_in_time_slot = papers_in_session * parallel_tracks;
int time_slot_a = ((index_a + papers_in_time_slot) / papers_in_time_slot) - 1;
int time_slot_b = ((index_b + papers_in_time_slot) / papers_in_time_slot) - 1;
if (session_seq_a == session_seq_b)
return 0;
else if (time_slot_a == time_slot_b)
change = (trade_of_coefficient + 1) * (session_distance_matrix[a][session_seq_a] + session_distance_matrix[b][session_seq_b] - session_distance_matrix[a][session_seq_b] - session_distance_matrix[b][session_seq_a] + 2 * distance_matrix[a][b]);
else
{
change = (trade_of_coefficient + 1) * (session_distance_matrix[a][session_seq_a] + session_distance_matrix[b][session_seq_b] - session_distance_matrix[a][session_seq_b] - session_distance_matrix[b][session_seq_a]) + 2 * distance_matrix[a][b];
for (int i = 0; i < parallel_tracks; ++i)
change += trade_of_coefficient * (session_distance_matrix[a][time_slot_b * parallel_tracks + i] + session_distance_matrix[b][time_slot_a * parallel_tracks + i] - session_distance_matrix[a][time_slot_a * parallel_tracks + i] - session_distance_matrix[b][time_slot_b * parallel_tracks + i]);
}
return change;
}
double HillClimb::score(State state)
{
double score1 = 0.0;
for (int i = 0; i < parallel_tracks; i++)
for (int j = 0; j < sessions_in_track; j++)
for (int k = 0; k < papers_in_session; k++)
for (int l = k + 1; l < papers_in_session; l++)
{
int index1 = j * (papers_in_session * parallel_tracks) + i * papers_in_session + k;
int index2 = j * (papers_in_session * parallel_tracks) + i * papers_in_session + l;
score1 += 1 - distance_matrix[state[index1]][state[index2]];
}
// Sum of distances for competing papers.
double score2 = 0.0;
for (int i = 0; i < parallel_tracks; i++)
for (int j = 0; j < sessions_in_track; j++)
for (int k = 0; k < papers_in_session; k++)
for (int l = i + 1; l < parallel_tracks; l++)
for (int m = 0; m < papers_in_session; m++)
{
int index1 = j * (papers_in_session * parallel_tracks) + i * papers_in_session + k;
int index2 = j * (papers_in_session * parallel_tracks) + l * papers_in_session + m;
score2 += distance_matrix[state[index1]][state[index2]];
}
double score = score1 + trade_of_coefficient * score2;
return score;
}
State HillClimb::hill_climb(bool random_init, double duration, const int seed = 0)
{
duration *= 60; // Assumed in minutes originally
auto initial_time = Time::now();
decltype(initial_time) now;
decltype(now - initial_time) dur;
decltype(std::chrono::duration_cast<double_seconds>(dur)) secs;
State state, best_state;
auto n = parallel_tracks * sessions_in_track * papers_in_session;
auto count_limit = static_cast<int>(std::pow(n, 2));
rng.seed(seed);
double best_score = 0;
while (secs.count() < duration)
{
if (random_init)
state = random_initialize();
else
state = greedy_initialize();
construct_session_matrix(state);
double accumulated_score = 0;
double objective_function = score(state);
for (int cnt = 0; cnt != count_limit && secs.count() < duration; ++cnt)
{
auto pair = next_state();
auto index_a = pair.first;
auto index_b = pair.second;
double score = score_increment(index_a, index_b, state);
if (score > 0)
{
accumulated_score += score;
update_state(index_a, index_b, state);
cnt = 0;
}
else
{
double p = std::exp(score * (cnt + 1));
bool update = static_cast<bool>(std::bernoulli_distribution(p)(rng));
if (update)
{
accumulated_score += score;
update_state(index_a, index_b, state);
}
}
now = Time::now();
dur = now - initial_time;
secs = std::chrono::duration_cast<double_seconds>(dur);
// std::cout << secs.count() << " " << duration << std::endl;
}
if ((objective_function + accumulated_score) > best_score)
{
best_score = objective_function + accumulated_score;
best_state = state;
}
};
return best_state;
}