
 xcore – xsd content reporter  

1 
 

xcore – xsd content reporter 

(Pre-release information, version 2023-08-21) 

Change log 

* 20230821 

Added call parameter $dnamesExcluded, a list of folders the content of which are excluded from input 

* 20230802 
Added descriptions of installation and command-line interface 
* 20230630 

(1) Prog change: Mandatory content items and their cardinality constraint in bold 
(2) Prog change: Cardinality constraint of choice branches flagged by preceding "-" 
(3) Prog change: Enumeration dictionaries integrated into Simple Type tables 

The new generation of an OJP Schema Reporter is a generic, customisable XSD documentation tool. 

The tool has a command-line interface and maps schema contents to a report. The report type is 

determined by call parameter $report. Currently, the following report types are supported: 

 contab (“content tables”) – an extended version of the “classic” report produced by  the old 

generation tools ojp/docs/ojp-*.xsl 

 edesc (“expanded component descriptors”) – an XML representation of selected main 

schema components (top-level element declarations, type and group definitions), with group 

and base type references recursively expanded 

 def (“component definitions”) – copies of selected schema components, optionally with 

annotations removed 

 desc (“component descriptors”) – an XML representation of selected main schema 

components, in which references are not expanded 

The tool can be used for creating reports of all major schema components (top-level element, type 

definitions, group definitions), or of a user-defined set determined by fine-grained name filters (e.g. all 

type definitions with a name starting with “vehicle”, containing “parking” and ending with 

“structure”). 

This preliminary documentation is restricted to the contab report, meant to replace the output 

produced by old generation tools. Some brief remarks about the other report types follow. 

The edesc report is an XML representation of effective component content, e.g. providing information 

about which parts of content are inherited from which base type. Note that the contab report is 

implemented by first generating an edesc report and transforming it into a contab report. 

The def report amounts to an extraction of selected components. The possibility to strip annotation 

(parameter $skipAnno) greatly enhances the readability of component contents.  

The desc report is primarily used for development purposes. 

 

Installation 

(1) Unzip the xcore archive, in a folder at your discretion. 

(2) Install BaseX, version 10 or higher. If the operation system is Windows, download and execute 

the Windows installer, otherwise download and unzip the ZIP package. 

(3) Edit file $basex/bin/basex.bat in order to increase available heap space. Replace line 
set BASEX_JVM=-Xmx1200m %BASEX_JVM% 

https://basex.org/download


 xcore – xsd content reporter  

2 
 

with 
set BASEX_JVM=-Xmx4800m %BASEX_JVM% 

 

 

Command-line interface 

As the application is written in XQuery and meant to be processed by BaseX, it can be launched using 

the command-line interface of BaseX. 

Usage - general pattern 

Note: whitespace is added to the call for readability, which must be removed. Optional options in 

square brackets. 
 

basex -b report=report-type 

 -b dir=input-folder 

 [-b odir=output-folder]  

 [-b ofile=output-file-name] 

       [-b dnamesExcluded=excluded-dir-names] 

 [-s indent=yes] 

 [-b custom=custom-file] 

 [-b domains=domains-type] 

 [-b edescReportDir=edesc-report-dir] 

 [-b skipAnno=skip-anno-value] 

 [-b enames=elem-name-pattern] 

 [-b anames=att-name-pattern] 

 [-b tnames=type-name-pattern] 

 [-b gnames=group-name-pattern] 

 [-b hnames=att-group-name-pattern] 

 path/to/xcore/xcore.xq 

where 

 report-type     = Report type (contab | edesc | desc | def) 

 input-folder     = Path to the folder containing the input XSDs (at any depth) 

 output-folder   = Path to the folder into which the output is written 

 output-file-name   = Parameter evaluated only if no domains have been defined: 

      file name of the report file 

 excluded-dir-names   = Whitespace separated list of folder names; XSDs directly or  

      indirectly contained by these folders are not considered as input;  

                                              within folder names, replace whitespace characters with the string   

 indent=yes    = Parameter evaluated only if the report is not written into a file: 

      indent XML data 

 custom-file     = Path to the optional customization file 

 domain-type    = If “xsd”, each XSD is described by a distinct report file  

 edesc-report-dir  = Parameter evaluated only if report=contab: 

      path to the folder containing edesc reports skip-anno-switch 

 = Parameter evaluated only if report=def: 

      if =1, annotations are removed, otherwise retained  

 elem-name-pattern = Ignore top-level elements not matching this name pattern  

 att-name-pattern  = Ignore top-level attributes not matching this name pattern  

 type-name-pattern = Ignore type definitions not matching this name pattern  

 group-name-pattern = Ignore group definitions not matching this name pattern  

 att-group-name-pattern = Ignore att group definitions not matching this name pattern  

 

https://basex.org/download


 xcore – xsd content reporter  

3 
 

Further explanations: 

(1) Relative paths are resolved against the current working directory.  

(2) Output files are written into a subfolder of output-folder; the name of the subfolder is equal 

to report-type 

(3) If domains are defined, one report file is created for each domain. Otherwise, all output is 

written into a single file.  

(4) If domains are defined, parameter output-file-name is ignored 

(5) Domains can be defined in two different ways: 

o Using call parameter domain-type=xsd – one domain for each XSD 

o Using a custom file defining domains (element domains) 

(6) In case of domain-type=xsd, the domain files are arranged in a folder structure mirroring the 

input folder structure; for example, an XSD located at  
$input-folder/foo/bar/some.xsd  

is mapped to a report file  
$output-folder/report-name/foo/bar/some.xml 

 or 
$output-folder/report-name/foo/bar/some.html 

 depending on the report type. 

 

  



 xcore – xsd content reporter  

4 
 

Usage examples – contab reports 

The following examples assume: 

1. xcore is installed as a sibling folder of SBB folders NeTEx, OJP and SIRI  

2. A new folder xcore-works is created which is a sibling folder of folders NeTEx, OJP and SIRI. 

3. The command-line calls are executed in folder xcore-works  

Attention: the call examples contain linefeeds for readability. The linefeeds must be removed! 

E1: contab report of OJP (variant 1) 

Style: one domain for each target namespace 

Call: 
  basex -b report=contab  

        -b dir=../OJP  

        -b odir=output/ojp 

        -d "dnamesExcluded=.git .deprecated to%20be%20removed"  

        -b custom=../xcore/custom-ojp.xml  

        ../xcore/xcore.xq 

Report file: xcore-works/output/ojp/contab/contab-index.html 

 

E2: contab report of OJP (variant 2) 

Style: one domain for each XSD 

Call: 
  basex -b report=contab  

        -b dir=../OJP  

        -b odir=output/ojp-per-xsd  

        -b custom=../xcore/custom-ojp-perxsd.xml  

        -b domains=xsd  

        ../xcore/xcore.xq 

Report file: xcore-works/output/ojp-per-xsd/contab/contab-index.html 
 

E3: contab report of SIRI 

Style:  one domain for each XSD 

Call: 
  basex -b report=contab  

        -b dir=../SIRI  

        -b odir=output/siri-per-xsd  

        -b custom=../xcore/custom-siri-perxsd.xml  

        -b domains=xsd  

        ../xcore/xcore.xq 

Report file: xcore-works/output/siri-per-xsd/contab/contab-index.html 
 

E4: contab report of NeTEx 

Style: one domain for each XSD 

The report is created in two steps in order to avoid resource shortage. 
  basex -b report=edesc  

        -b dir=../NeTEx  

        -b odir=output/netex-per-xsd  

        -b custom=../xcore/custom-netex-perxsd.xml  

        -b domains=xsd  

        ../xcore/xcore.xq 

  basex -b report=contab  

        -b dir=../NeTEx  

        -b odir=output/netex-per-xsd  

        -b custom=../xcore/custom-netex-perxsd.xml  

        -b domains=xsd  

        -b edescReportDir=output/netex-per-xsd/edesc  

        ../xcore/xcore.xq 

Report file: xcore-works/output/netex-per-xsd/contab/contab-index.html 

  



 xcore – xsd content reporter  

5 
 

Usage examples – edesc reports 

The following examples assume: 

1. xcore is installed as a sibling folder of SBB folders NeTEx, OJP and SIRI  

2. A new folder xcore-works is created which is a sibling folder of folders NeTEx, OJP and SIRI. 

3. The command-line calls are executed in folder xcore-works  

Attention: the call examples contain linefeeds for readability. The linefeeds must be removed! 

E1: edesc reports of OJP (variant 1) 

Style: one domain for each target namespace 

Call: 
  basex -b report=edesc  

        -b dir=../OJP  

        -b odir=output/ojp  

        -b custom=../xcore/custom-ojp.xml  

        ../xcore/xcore.xq 

Report files: xcore-works/output/ojp/edesc/*.xml 

 

E2: edesc reports of OJP (variant 2) 

Style: one domain for each XSD 

Call: 
  basex -b report=edesc  

        -b dir=../OJP  

        -b odir=output/ojp-per-xsd  

        -b custom=../xcore/custom-ojp-perxsd.xml  

        -b domains=xsd  

        ../xcore/xcore.xq 

Report file: xcore-works/output/ojp-per-xsd/edesc//*.xml 
 

E3: edesc report of SIRI 

Style:  one domain for each XSD 

Call: 
  basex -b report=edesc  

        -b dir=../SIRI  

        -b odir=output/siri-per-xsd  

        -b custom=../xcore/custom-siri-perxsd.xml  

        -b domains=xsd  

        ../xcore/xcore.xq 

Report file: xcore-works/output/siri-per-xsd/edesc//*.xml 
 

E4: edesc report of NeTEx 

Style: one domain for each XSD 

Call: 
  basex -b report=edesc  

        -b dir=../NeTEx  

        -b odir=output/netex-per-xsd  

        -b custom=../xcore/custom-netex-perxsd.xml  

        -b domains=xsd  

        ../xcore/xcore.xq 

Report file: xcore-works/output/netex-per-xsd/edesc//*.xml 

  



 xcore – xsd content reporter  

6 
 

Usage examples – def reports 

The following examples assume: 

1. xcore is installed as a sibling folder of SBB folders NeTEx, OJP and SIRI  

2. A new folder xcore-works is created which is a sibling folder of folders NeTEx, OJP and SIRI. 

3. The command-line calls are executed in folder xcore-works  

Attention: the call examples contain linefeeds for readability. The linefeeds must be removed! 

E1: Display the type definition “FareResultStructure” on the console 

Style: Annotations retained 

Call: 
  basex -b report=def  

        -b dir=../OJP  

        -b tnames=fareresultstr* 

        -b skipAnno=0 

        -s indent=yes 

        ../xcore/xcore.xq 

 

E2: Display the type definition without annotations 

Style: Annotations removed 

Call: 
  basex -b report=def  

        -b dir=../OJP  

        -b tnames=fareresultstr*  

        -b skipAnno=1 

        -s indent=yes 

        ../xcore/xcore.xq 

 

E3: Display the definitions of all attribute groups 

Style: Annotations removed 

Call: 
  basex -b report=def  

        -b dir=../OJP  

        -b hnames=*  

        -b skipAnno=1 

        -s indent=yes 

        ../xcore/xcore.xq 

 

E4: Write the definitions of all attribute groups into a file 

Style: Annotations removed 

Call: 
  basex -b report=def  

        -b dir=../OJP  

        -b odir=output/ojp  

        -b ofile=attgroups.xml 

        -b hnames=*  

        -b skipAnno=1 

        -s indent=yes 

        ../xcore/xcore.xq 

Report file: xcore-works/output/ojp/def/attgroups.xml 

  



 xcore – xsd content reporter  

7 
 

E5: Write a file containing the types *fare* 

Style: (1) Annotations removed, (2) single report file 

Call: 
  basex -b report=def  

        -b dir=../OJP  

        -b odir=output/ojp  

        -b ofile=types-fare.xml  

        -b tnames=*fare*  

        -b skipAnno=1 

        ../xcore/xcore.xq 

Report file: xcore-works/output/ojp/def/types-fare.xml 

E6: Write a file containing all global attribute declarations 

Style: (1) Annotations removed, (2) single report file 

Call: 
  basex -b report=def  

        -b dir=../OJP  

        -b odir=output/ojp  

        -b ofile=atts-all.xml  

        -b anames=*  

        -b skipAnno=1 

        ../xcore/xcore.xq 

Report file: xcore-works/output/ojp/def/atts-all.xml 

E7: Write a file containing the group definitions *passenger* 

Style: (1) Annotations removed, (2) single report file 

Call: 
  basex -b report=def  

        -b dir=../OJP  

        -b odir=output/ojp  

        -b ofile=groups-passenger-with-anno.xml  

        -b gnames=*passenger*  

        -b skipAnno=1 

        ../xcore/xcore.xq 

Report files: xcore-works/output/ojp/def/groups-passenger-with-anno.xml 

E8: Write all group definitions into report files, one file per XSD 

Style: (1) Annotations removed, (2) one report for each XSD containing attribute groups 

Call: 
  basex -b report=def  

        -b dir=../OJP  

        -b odir=output/ojp-groups  

        -b domains=xsd  

        -b gnames=*  

        -b skipAnno=1 

        ../xcore/xcore.xq 

Report files: xcore-works/output/ojp-groups/def//*.xml 

  



 xcore – xsd content reporter  

8 
 

Tool output examples 

Example tool output can be created by following the instructions in Usage examples – contab reports. 

Tool output can also be downloaded from here, along with source code and customization data (link 

expires 2023-09-01): 

https://send.parsqube.de/file/C1NhdcU6AtdjVNfJ/8jtoCeXyf9S3qwgq/xcore-works.20230802.zip 

Where to find what: 

Path Resource 

output/ojp/contab/ojp.html OJP report corresponding to previous OJP report 

output/ojp/contab/contab-index.html Entry point to OJP reports 

output/siri/contab/contab-index.html Entry point to SIRI reports 

output/netex/contab/contab-index.html Entry point to NETEX reports 

xcore-custom/* Customization files used to create the reports 

xcore-sourcecode xcore source code 

 

The OJP schemas are reported using one HTML file per target namespace. (This holds only 

approximately – the OJP namespace report also contains a couple of SIRI components, in order to 

mimick the old generation report precisely.) In order to inspect the report, you may either open 

ojp.html (with contents corresponding to the old generation report), or contab-index.html, with a 

TOC giving access to all namespace reports. You may of course also immediately open another HTML 

file corresonding to a different target namespace (e.g. ifopt.html). 

 

The SIRI and Netex reports consist of one HTML file for each XSD. An index page (contab-index.html) 

displays a TOC with links to all XSD reports. 

 

contab report 

The report is a slightly extended version of the report hitherto produced using the old generation tools 

ojp/docs/ojp-*.xsl. 

 

Differences 

The main differences are summarized by the following table. 

New Behavior Old Behavior 

Generic and customizable Not generic, not customizable 

All type and group references can be navigated Only references in the OJP namespace  

Multiple HTML files – one for each target 
namespace 

One single HTML output file 

Complex type description includes base type 
contents 

Base type contents is not shown 

Also local type content is reported Local type content is ignored 

Complex type restriction are described correctly Complex type restriction was not recognized 

Description of enumeration types includes the 
documentation of the individual enumeration 
values 

Enumeration types reported without 
documentation 

Uses an intermediate format which is purely 
structural information without commitment to 
layout. 

Uses an intermediate format designed to 
support the layout of the final report. 

https://send.parsqube.de/file/C1NhdcU6AtdjVNfJ/8jtoCeXyf9S3qwgq/xcore-works.20230802.zip


 xcore – xsd content reporter  

9 
 

 

Some details 

Generic and customizable 

The xcore application is a generic XSD processing tool, without any assumptions concerning the style 

of the XSDs to be evaluated. Note however the following limitations: 

(a) The following XSD 1.1 feature is not used: alternative 

(b) The xs:redefine feature is not used 

(c) No use of chameleon schemas (schema with a target namespace including a schema without 

target namespace) 

Only some customization is supported by call parameters. The main part of customization is enabled 

by the use of a customization file, passed to the application via call parameter ($custom) and 

containing the details of customization. For example, the use of namespace prefixes can be controlled 

by  customization. As another example, display names of schema components can be edited, a feature 

used in order to reproduce the name editing behaviour of the old generation report tool (omitting the 

name suffix “Group” and “Structure” in certain contexts). 

 

Unlimited navigation 

The old generation report did not contain links to components across target namespace boundaries. 

More precisely, only types and groups within the OJP namespace were accessible. The limitation was 

probably motivated by the wish to restrict the documentation to OJP contents, rather than include the 

extensive contents of other namespaces, especially the SIRI namespace. 

The new generation report supports unlimited navigation without extending the documentation of the 

OJP namespace. This is achieved by producing a distinct report files for different target namespaces, 

connected by links. 

 

Multiple HTML files 

The possibility to distribute the schema report over several or even many HTML files is crucial for 

reporting large schema systems. 

By default, only a single HTML report is created. The creation of multiple HTML files is controlled by a 

parameter ($domains) or by the customization document. The report of the OJP schemas was created 

using a customization reproducing the contents of the old report. Such behaviour is achieved using 

“custom domains”, with precise information which XSDs to include and in which order to display their 

reports. 

Note that the very large system “NeTEx” was reported by using a different feature - “one HTML file 

per XSD”.  

 

  



 xcore – xsd content reporter  

10 
 

Appendix: example of an edesc representation 

The following listing shows an example of the edesc (“expanded component descriptor”) of a complex 

type definition. Note that type content is structured in a logical way without commitment to a tabular 

representation. Some points of possible interest: 

 Base type references are (recursively expanded) 

 Group references are (recursively expanded) 

 Types of attributes or child elements are categorized (@typeCategory) 

 Simple types of attributes or child elements are described in detail (@typeDesc) 

 Component names and references use normalized prefixes, which are the same across all 

XSDs of the system 

 All content items (attributes, elements, groups) have an @z:occ attribute providing a 

standardized representation of cardinality constraints 

<z:complexType z:name="siri:ProducerResponseStructure" z:typeCategory="cc"  

               xml:base="file:///C:/projects/sbb/ojp/siri/xsd/siri/siri_requests.xsd"> 

  <z:baseType z:name="siri:ResponseStructure" z:typeCategory="cc"> 

    <z:sequence z:occ="1:1"> 

      <z:element z:name="siri:ResponseTimestamp" z:reference="yes" z:elementFromCache="yes"  

                 z:occ="1:1" z:type="xs:dateTime" z:typeCategory="sb" z:typeDesc="xs:dateTime"  

                 xml:base="file:///C:/projects/sbb/ojp/siri/xsd/siri/siri_request_support.xsd"/> 

    </z:sequence> 

  </z:baseType> 

  <z:extension z:name="siri:ProducerResponseStructure"> 

    <z:sequence z:occ="1:1"> 

      <z:group z:name="siri:ProducerResponseEndpointGroup" z:reference="yes" z:groupFromCache="yes"  

               z:occ="1:1"> 

        <z:sequence z:occ="1:1"> 

          <z:element z:name="siri:ProducerRef" z:type="siri:ParticipantRefStructure"  

                     z:typeCategory="cs" z:minOccurs="0" z:occ="0:1"/> 

          <z:element z:name="siri:Address" z:type="siri:EndpointAddress" z:typeCategory="se"  

                     z:typeDesc="xs:anyURI: (empty restriction)" z:minOccurs="0" z:occ="0:1"/> 

          <z:element z:name="siri:ResponseMessageIdentifier"  

                     z:type="siri:MessageQualifierStructure" z:typeCategory="cs" z:minOccurs="0"  

                     z:occ="0:1"/> 

          <z:element z:name="siri:RequestMessageRef" z:type="siri:MessageRefStructure"  

                     z:typeCategory="cs" z:minOccurs="0" z:occ="0:1"/> 

        </z:sequence> 

      </z:group> 

      <z:group z:name="siri:DelegatorEndpointGroup" z:reference="yes" z:groupFromCache="yes"  

               z:occ="1:1"> 

        <z:sequence z:occ="1:1"> 

          <z:element z:name="siri:DelegatorAddress" z:type="siri:EndpointAddress"  

                     z:typeCategory="se" z:typeDesc="xs:anyURI: (empty restriction)"  

                     z:minOccurs="0" z:occ="0:1"/> 

          <z:element z:name="siri:DelegatorRef" z:type="siri:ParticipantRefStructure"  

                     z:typeCategory="cs" z:minOccurs="0" z:occ="0:1"/> 

        </z:sequence> 

      </z:group> 

    </z:sequence> 

  </z:extension> 

</z:complexType> 

 

 


	xcore – xsd content reporter
	Installation
	Command-line interface
	Usage - general pattern
	Usage examples – contab reports
	E1: contab report of OJP (variant 1)
	E2: contab report of OJP (variant 2)
	E3: contab report of SIRI
	E4: contab report of NeTEx

	Usage examples – edesc reports
	E1: edesc reports of OJP (variant 1)
	E2: edesc reports of OJP (variant 2)
	E3: edesc report of SIRI
	E4: edesc report of NeTEx

	Usage examples – def reports
	E1: Display the type definition “FareResultStructure” on the console
	E2: Display the type definition without annotations
	E3: Display the definitions of all attribute groups
	E4: Write the definitions of all attribute groups into a file
	E5: Write a file containing the types *fare*
	E6: Write a file containing all global attribute declarations
	E7: Write a file containing the group definitions *passenger*
	E8: Write all group definitions into report files, one file per XSD


	Tool output examples
	contab report
	Differences
	Some details
	Generic and customizable
	Unlimited navigation
	Multiple HTML files


	Appendix: example of an edesc representation


