-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathML_estimate_component_based_normalisation.cxx
308 lines (277 loc) · 12.8 KB
/
ML_estimate_component_based_normalisation.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
Copyright (C) 2001- 2008, Hammersmith Imanet Ltd
Copyright (C) 2019-2020, 2022, University College London
Copyright (C) 2016-2017, PETsys Electronics
Copyright (C) 2021, Gefei Chen
This file is part of STIR.
SPDX-License-Identifier: Apache-2.0
See STIR/LICENSE.txt for details
*/
/*!
\file
\ingroup recon_buildblock
\brief Implementation of ML_estimate_component_based_normalisation
\author Kris Thielemans
\author Tahereh Niknejad
\author Gefei Chen
*/
#include "stir/recon_buildblock/ML_estimate_component_based_normalisation.h"
#include "stir/ML_norm.h"
#include "stir/Scanner.h"
#include "stir/stream.h"
#include "stir/display.h"
#include "stir/info.h"
#include "stir/warning.h"
#include "stir/ProjData.h"
#include <boost/format.hpp>
#include <fstream>
#include <string>
#include <algorithm>
START_NAMESPACE_STIR
void
ML_estimate_component_based_normalisation(const std::string& out_filename_prefix,
const ProjData& measured_data,
const ProjData& model_data,
int num_eff_iterations,
int num_iterations,
bool do_geo,
bool do_block,
bool do_symmetry_per_block,
bool do_KL,
bool do_display)
{
const int num_transaxial_blocks = measured_data.get_proj_data_info_sptr()->get_scanner_sptr()->get_num_transaxial_blocks();
const int num_axial_blocks = measured_data.get_proj_data_info_sptr()->get_scanner_sptr()->get_num_axial_blocks();
const int virtual_axial_crystals
= measured_data.get_proj_data_info_sptr()->get_scanner_sptr()->get_num_virtual_axial_crystals_per_block();
const int virtual_transaxial_crystals
= measured_data.get_proj_data_info_sptr()->get_scanner_sptr()->get_num_virtual_transaxial_crystals_per_block();
const int num_physical_rings = measured_data.get_proj_data_info_sptr()->get_scanner_sptr()->get_num_rings()
- (num_axial_blocks - 1) * virtual_axial_crystals;
const int num_physical_detectors_per_ring
= measured_data.get_proj_data_info_sptr()->get_scanner_sptr()->get_num_detectors_per_ring()
- num_transaxial_blocks * virtual_transaxial_crystals;
const int num_transaxial_buckets = measured_data.get_proj_data_info_sptr()->get_scanner_sptr()->get_num_transaxial_buckets();
const int num_axial_buckets = measured_data.get_proj_data_info_sptr()->get_scanner_sptr()->get_num_axial_buckets();
const int num_transaxial_blocks_per_bucket
= measured_data.get_proj_data_info_sptr()->get_scanner_sptr()->get_num_transaxial_blocks_per_bucket();
const int num_axial_blocks_per_bucket
= measured_data.get_proj_data_info_sptr()->get_scanner_sptr()->get_num_axial_blocks_per_bucket();
int num_physical_transaxial_crystals_per_basic_unit
= measured_data.get_proj_data_info_sptr()->get_scanner_sptr()->get_num_transaxial_crystals_per_block()
- virtual_transaxial_crystals;
int num_physical_axial_crystals_per_basic_unit
= measured_data.get_proj_data_info_sptr()->get_scanner_sptr()->get_num_axial_crystals_per_block() - virtual_axial_crystals;
// If there are multiple buckets, we increase the symmetry size to a bucket. Otherwise, we use a block.
if (do_symmetry_per_block == false)
{
if (num_transaxial_buckets > 1)
{
num_physical_transaxial_crystals_per_basic_unit *= num_transaxial_blocks_per_bucket;
}
if (num_axial_buckets > 1)
{
num_physical_axial_crystals_per_basic_unit *= num_axial_blocks_per_bucket;
}
}
FanProjData model_fan_data;
FanProjData fan_data;
DetectorEfficiencies data_fan_sums(IndexRange2D(num_physical_rings, num_physical_detectors_per_ring));
DetectorEfficiencies efficiencies(IndexRange2D(num_physical_rings, num_physical_detectors_per_ring));
GeoData3D measured_geo_data(num_physical_axial_crystals_per_basic_unit,
num_physical_transaxial_crystals_per_basic_unit / 2,
num_physical_rings,
num_physical_detectors_per_ring); // inputes have to be modified
GeoData3D norm_geo_data(num_physical_axial_crystals_per_basic_unit,
num_physical_transaxial_crystals_per_basic_unit / 2,
num_physical_rings,
num_physical_detectors_per_ring); // inputes have to be modified
BlockData3D measured_block_data(num_axial_blocks, num_transaxial_blocks, num_axial_blocks - 1, num_transaxial_blocks - 1);
BlockData3D norm_block_data(num_axial_blocks, num_transaxial_blocks, num_axial_blocks - 1, num_transaxial_blocks - 1);
make_fan_data_remove_gaps(model_fan_data, model_data);
{
// next could be local if KL is not computed below
FanProjData measured_fan_data;
float threshold_for_KL;
// compute factors dependent on the data
{
make_fan_data_remove_gaps(measured_fan_data, measured_data);
/* TEMP FIX */
for (int ra = model_fan_data.get_min_ra(); ra <= model_fan_data.get_max_ra(); ++ra)
{
for (int a = model_fan_data.get_min_a(); a <= model_fan_data.get_max_a(); ++a)
{
for (int rb = std::max(ra, model_fan_data.get_min_rb(ra)); rb <= model_fan_data.get_max_rb(ra); ++rb)
{
for (int b = model_fan_data.get_min_b(a); b <= model_fan_data.get_max_b(a); ++b)
if (model_fan_data(ra, a, rb, b) == 0)
measured_fan_data(ra, a, rb, b) = 0;
}
}
}
threshold_for_KL = measured_fan_data.find_max() / 100000.F;
// display(measured_fan_data, "measured data");
make_fan_sum_data(data_fan_sums, measured_fan_data);
make_geo_data(measured_geo_data, measured_fan_data);
make_block_data(measured_block_data, measured_fan_data);
if (do_display)
display(measured_block_data, "raw block data from measurements");
/* {
char *out_filename = new char[20];
sprintf(out_filename, "%s_%d.out",
"fan", ax_pos_num);
std::ofstream out(out_filename);
out << data_fan_sums;
delete[] out_filename;
}
*/
}
// std::cerr << "model min " << model_fan_data.find_min() << " ,max " << model_fan_data.find_max() << std::endl;
if (do_display)
display(model_fan_data, "model");
#if 0
{
shared_ptr<ProjData> out_proj_data_ptr =
new ProjDataInterfile(model_data.get_proj_data_info_sptr()->clone,
output_file_name);
set_fan_data(*out_proj_data_ptr, model_fan_data);
}
#endif
for (int iter_num = 1; iter_num <= std::max(num_iterations, 1); ++iter_num)
{
if (iter_num == 1)
{
efficiencies.fill(sqrt(data_fan_sums.sum() / model_fan_data.sum()));
norm_geo_data.fill(1);
norm_block_data.fill(1);
}
// efficiencies
{
fan_data = model_fan_data;
apply_geo_norm(fan_data, norm_geo_data);
apply_block_norm(fan_data, norm_block_data);
if (do_display)
display(fan_data, "model*geo*block");
for (int eff_iter_num = 1; eff_iter_num <= num_eff_iterations; ++eff_iter_num)
{
iterate_efficiencies(efficiencies, data_fan_sums, fan_data);
{
char* out_filename = new char[out_filename_prefix.size() + 30];
sprintf(out_filename, "%s_%s_%d_%d.out", out_filename_prefix.c_str(), "eff", iter_num, eff_iter_num);
std::ofstream out(out_filename);
out << efficiencies;
delete[] out_filename;
}
if (do_KL)
{
apply_efficiencies(fan_data, efficiencies);
std::cerr << "measured*norm min " << measured_fan_data.find_min() << " ,max " << measured_fan_data.find_max()
<< std::endl;
std::cerr << "model*norm min " << fan_data.find_min() << " ,max " << fan_data.find_max() << std::endl;
if (do_display)
display(fan_data, "model_times_norm");
info(boost::format("KL %1%") % KL(measured_fan_data, fan_data, threshold_for_KL));
// now restore for further iterations
fan_data = model_fan_data;
apply_geo_norm(fan_data, norm_geo_data);
apply_block_norm(fan_data, norm_block_data);
}
if (do_display)
{
fan_data.fill(1);
apply_efficiencies(fan_data, efficiencies);
display(fan_data, "eff norm");
// now restore for further iterations
fan_data = model_fan_data;
apply_geo_norm(fan_data, norm_geo_data);
apply_block_norm(fan_data, norm_block_data);
}
}
} // end efficiencies
// geo norm
fan_data = model_fan_data;
apply_efficiencies(fan_data, efficiencies);
apply_block_norm(fan_data, norm_block_data);
if (do_geo)
iterate_geo_norm(norm_geo_data, measured_geo_data, fan_data);
#if 0
{ // check
for (int a=0; a<measured_geo_data.get_length(); ++a)
for (int b=0; b<num_detectors; ++b)
if (norm_geo_data[a][b]==0 && measured_geo_data[a][b]!=0)
warning("norm geo 0 at a=%d b=%d measured value=%g\n",
a,b,measured_geo_data[a][b]);
}
#endif
{
char* out_filename = new char[out_filename_prefix.size() + 30];
sprintf(out_filename, "%s_%s_%d.out", out_filename_prefix.c_str(), "geo", iter_num);
std::ofstream out(out_filename);
out << norm_geo_data;
delete[] out_filename;
}
if (do_KL)
{
apply_geo_norm(fan_data, norm_geo_data);
info(boost::format("KL %1%") % KL(measured_fan_data, fan_data, threshold_for_KL));
}
if (do_display)
{
fan_data.fill(1);
apply_geo_norm(fan_data, norm_geo_data);
display(fan_data, "geo norm");
}
// block norm
{
fan_data = model_fan_data;
apply_efficiencies(fan_data, efficiencies);
apply_geo_norm(fan_data, norm_geo_data);
if (do_block)
iterate_block_norm(norm_block_data, measured_block_data, fan_data);
#if 0
{ // check
for (int a=0; a<measured_block_data.get_length(); ++a)
for (int b=0; b<measured_block_data[0].get_length(); ++b)
if (norm_block_data[a][b]==0 && measured_block_data[a][b]!=0)
warning("block norm 0 at a=%d b=%d measured value=%g\n",
a,b,measured_block_data[a][b]);
}
#endif
{
char* out_filename = new char[out_filename_prefix.size() + 30];
sprintf(out_filename, "%s_%s_%d.out", out_filename_prefix.c_str(), "block", iter_num);
std::ofstream out(out_filename);
out << norm_block_data;
delete[] out_filename;
}
if (do_KL)
{
apply_block_norm(fan_data, norm_block_data);
info(boost::format("KL %1%") % KL(measured_fan_data, fan_data, threshold_for_KL));
}
if (do_display)
{
fan_data.fill(1);
apply_block_norm(fan_data, norm_block_data);
display(norm_block_data, "raw block norm");
display(fan_data, "block norm");
}
} // end block
//// print KL for fansums
if (do_KL)
{
DetectorEfficiencies fan_sums(IndexRange2D(num_physical_rings, num_physical_detectors_per_ring));
GeoData3D geo_data(num_physical_axial_crystals_per_basic_unit,
num_physical_transaxial_crystals_per_basic_unit / 2,
num_physical_rings,
num_physical_detectors_per_ring); // inputes have to be modified
BlockData3D block_data(num_axial_blocks, num_transaxial_blocks, num_axial_blocks - 1, num_transaxial_blocks - 1);
make_fan_sum_data(fan_sums, fan_data);
make_geo_data(geo_data, fan_data);
make_block_data(block_data, measured_fan_data);
info(boost::format("KL on fans: %1%, %2") % KL(measured_fan_data, fan_data, 0) % KL(measured_geo_data, geo_data, 0));
}
}
}
}
END_NAMESPACE_STIR