-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharima.h
439 lines (387 loc) · 15.9 KB
/
arima.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
/**
* @file timeseries_forecast.c
* @brief Implements time‐series forecasting routines including utility functions,
* linear regression routines, stationarity testing, diagnostic matrix computations, and error metrics.
*
* This file contains helper functions for array and matrix operations, various linear regression
* functions (univariate, bivariate, and multivariate), procedures for testing and transforming a
* non‐stationary time series (using a Dickey–Fuller style approach), computing an extended
* autocorrelation matrix for model diagnostics, and functions to compute forecast error metrics
* such as MAPE and MAE.
*/
/*==============================================================================
Group: Utility Functions for Array and Matrix Operations
==============================================================================*/
/**
* @defgroup ArrayMatrixOperations Utility Functions for Array and Matrix Operations
* @{
*
* @brief Functions to perform basic statistical calculations, lag/lead shifts, and matrix operations.
*/
/**
* @brief Computes the mean (average) of a 1D array.
*
* @param arr The array of doubles.
* @param length The number of elements in the array.
* @return The mean value of the array.
*/
double calcMean(double arr[], int length);
/**
* @brief Computes the sum of the elements in a 1D array.
*
* @param arr The array of doubles.
* @param length The number of elements in the array.
* @return The sum of the array elements.
*/
double calcArrSum(double arr[], int length);
/**
* @brief Computes the sample standard deviation of a 1D array.
*
* @param arr The array of doubles.
* @param length The number of elements in the array.
* @return The sample standard deviation.
*/
double calcSD(double arr[], int length);
/**
* @brief Computes element‐by‐element differences between two 1D arrays.
*
* @param arr1 The first array.
* @param arr2 The second array.
* @param arr_diff Output array that will store the differences (arr1[i] - arr2[i]).
* @param size The number of elements in each array.
*/
void calcArrDiff(double arr1[], double arr2[], double arr_diff[], int size);
/**
* @brief Computes element‐by‐element differences between two 2D arrays (matrices).
*
* @param m The number of rows.
* @param n The number of columns.
* @param arr1 The first matrix.
* @param arr2 The second matrix.
* @param arr_diff Output matrix that will contain the differences.
*/
void calcMDArrDiff(int m, int n, double arr1[][n], double arr2[][n], double arr_diff[][n]);
/**
* @brief Computes the element‐wise product of two arrays.
*
* @param arr1 The first array.
* @param arr2 The second array.
* @param size The number of elements in each array.
* @return Pointer to an array containing the element‐wise products.
*
* @warning The returned pointer is to an array allocated on the stack. In production code,
* consider using dynamic allocation to avoid undefined behavior.
*/
double *calcArrProd(double arr1[], double arr2[], int size);
/**
* @brief Produces a new array in which each element is squared.
*
* @param arr The input array.
* @param size The number of elements in the array.
* @return Pointer to an array containing the squares of the original array elements.
*
* @warning This function returns a pointer to a local array. In production code this may cause
* memory issues and should be handled appropriately.
*/
double *squareArr(double arr[], int size);
/*--- Lag/Lead Operations ---*/
/**
* @brief Shifts an array forward by a specified lag to produce a “lead” series.
*
* @param arr The input array.
* @param arr_lead The output array such that arr_lead[i] = arr[i+lag].
* @param length The number of elements in the input array.
* @param lag The lead shift amount.
*/
void calcArrLead(double arr[], double arr_lead[], int length, int lag);
/**
* @brief Produces a lagged version of the input array.
*
* @param arr The input array.
* @param arr_lag The output array containing lagged values.
* @param length The number of elements in the array.
* @param lag The lag amount.
*/
void calcArrLag(double arr[], double arr_lag[], int length, int lag);
/**
* @brief A variant of the lag/lead operation that allows specifying both a lead and a lag.
*
* @param arr The input array.
* @param arr_lead The output array after shifting.
* @param length The number of elements in the array.
* @param lead The lead amount.
* @param lag The lag amount.
*/
void calcArrLeadLag(double arr[], double arr_lead[], int length, int lead, int lag);
/*--- Matrix Operations ---*/
/**
* @brief Computes the mean of each column in a 2D array.
*
* @param m The number of rows.
* @param n The number of columns.
* @param arr The input 2D array.
* @param mean_arr Output 2D array to store the column means.
*/
void calc2DArrMean(int m, int n, double arr[][n], double mean_arr[][n]);
/**
* @brief Normalizes a 2D array by subtracting the mean of each column.
*
* @param m The number of rows.
* @param n The number of columns.
* @param arr The input 2D array.
* @param norm_arr Output 2D array that will contain the normalized values.
*/
void modArrNorm(int m, int n, double arr[][n], double norm_arr[][n]);
/**
* @brief Column binds three 1D arrays into a 2D array.
*
* @param m The number of rows.
* @param n The number of columns (should be 3).
* @param arr1 The first 1D array.
* @param arr2 The second 1D array.
* @param arr3 The third 1D array.
* @param cbind_arr Output 2D array with each input array as one column.
*/
void Cbind(int m, int n, double arr1[], double arr2[], double arr3[], double cbind_arr[][n]);
/**
* @brief Column binds four 1D arrays into a 2D array.
*
* @param m The number of rows.
* @param n The number of columns (should be 4).
* @param arr1 The first 1D array.
* @param arr2 The second 1D array.
* @param arr3 The third 1D array.
* @param arr4 The fourth 1D array.
* @param cbind_arr Output 2D array with four columns.
*/
void Cbind4(int m, int n, double arr1[], double arr2[], double arr3[], double arr4[], double cbind_arr[][n]);
/**
* @brief Converts a 1D array into a 2D array with one column.
*
* @param m The number of elements.
* @param arr The input 1D array.
* @param arr_2d Output 2D array (with one column).
*/
void D2MD(int m, double arr[], double arr_2d[][1]);
/**
* @brief Converts a 2D array with one column into a 1D array.
*
* @param m The number of rows.
* @param arr The input 2D array.
* @param arr_1d Output 1D array.
*/
void MD2D(int m, double arr[][1], double arr_1d[]);
/**
* @brief Computes the transpose of a matrix.
*
* @param m Number of rows in the input matrix.
* @param n Number of columns in the input matrix.
* @param arr The input matrix.
* @param t_arr Output matrix that will store the transpose.
* @param size A parameter (possibly the total number of elements) used for processing.
*/
void transpose(int m, int n, double arr[][n], double t_arr[][m], int size);
/**
* @brief Performs matrix multiplication between two matrices.
*
* @param m1 Number of rows in the first matrix.
* @param n1 Number of columns in the first matrix (and rows in the second).
* @param m2 Number of rows in the second matrix.
* @param n2 Number of columns in the second matrix.
* @param arr1 The first matrix.
* @param arr2 The second matrix.
* @param p_arr Output matrix that will contain the product (dimensions m1 x n2).
* @param size A parameter (possibly total number of elements) used for processing.
*/
void product3(int m1, int n1, int m2, int n2, double arr1[][n1], double arr2[][n2], double p_arr[][n2], int size);
/**
* @brief Computes the inverse of a 3x3 matrix.
*
* @param n The dimension of the matrix (should be 3).
* @param a The input matrix.
* @param inv_arr Output matrix that will contain the inverse of a.
* @param size A parameter (possibly the size of the matrix) used for processing.
*/
void inverse(int n, double a[][n], double inv_arr[][n], int size);
/**
* @brief Computes the inverse of a 4x4 matrix.
*
* @param m The input 4x4 matrix.
* @param inv Output 4x4 matrix that will contain the inverse.
*/
void inverse4(double m[4][4], double inv[4][4]);
/** @} */ // end of ArrayMatrixOperations group
/*==============================================================================
Group: Linear Regression Functions
==============================================================================*/
/**
* @defgroup LinearRegressionFunctions Linear Regression Functions
* @{
*
* @brief Functions to estimate parameters using linear regression in univariate,
* bivariate, and multivariate settings.
*/
/**
* @brief Computes the slope (beta) and intercept by regressing y on x.
*
* @param arr_x The predictor array.
* @param arr_y The response array.
* @param length The number of observations.
* @return Pointer to an array containing two elements: beta (slope) and intercept.
*
* @details The function centers the data, computes standard deviations and Pearson correlation,
* and uses the formulas:
* beta = Corr * (S_y / S_x)
* intercept = mean(y) - beta * mean(x)
*/
double *LR1(double arr_x[], double arr_y[], int length);
/**
* @brief Generates predictions from a univariate linear regression model.
*
* @param arr The predictor array.
* @param arr_pred Output array that will contain the predicted values.
* @param beta The estimated slope.
* @param intercept The estimated intercept.
* @param length The number of observations.
*/
void LR1_Pred(double arr[], double arr_pred[], double beta, double intercept, int length);
/**
* @brief Computes regression estimates for a model with two predictors.
*
* @param arr_x1 First predictor array.
* @param arr_x2 Second predictor array.
* @param arr_y Response array.
* @param length Number of observations.
* @return Pointer to an array containing beta1, beta2, and the intercept.
*/
double *LR2(double arr_x1[], double arr_x2[], double arr_y[], int length);
/**
* @brief Computes predictions for a bivariate regression model.
*
* @param arr_x1 First predictor array.
* @param arr_x2 Second predictor array.
* @param arr_pred Output array that will contain the predicted values.
* @param beta1 Estimated coefficient for the first predictor.
* @param beta2 Estimated coefficient for the second predictor.
* @param intercept Estimated intercept.
* @param length Number of observations.
*/
void LR2_Pred(double arr_x1[], double arr_x2[], double arr_pred[], double beta1, double beta2, double intercept, int length);
/**
* @brief Performs multivariate linear regression with n predictors and m observations.
*
* @param m Number of observations.
* @param n Number of predictors.
* @param X Design matrix of predictors.
* @param Y Response variable (2D array with one column).
* @return Pointer to an array containing the n estimated coefficients followed by the intercept.
*
* @details The design matrix is first normalized by subtracting column means. The function
* then forms the normal equations (XᵀX) and solves for the coefficients using matrix inversion.
* The intercept is computed separately from the means of X and Y.
*/
double *LRM(int m, int n, double X[][n], double Y[][1]);
/**
* @brief Computes predictions from a multivariate regression model.
*
* @param m Number of observations.
* @param n Number of predictors.
* @param X Design matrix of predictors.
* @param Y_pred Output 2D array (one column) that will contain the predicted values.
* @param estimates Array containing the estimated coefficients and intercept (last element).
*/
void LRM_Pred(int m, int n, double X[][n], double Y_pred[][1], double estimates[n]);
/**
* @brief Computes the Pearson correlation coefficient between two arrays.
*
* @param arr_x First array.
* @param arr_y Second array.
* @param length Number of observations.
* @return The Pearson correlation coefficient.
*/
double Corr(double arr_x[], double arr_y[], int length);
/** @} */ // end of LinearRegressionFunctions group
/*==============================================================================
Group: Stationarity Testing and Data Preprocessing
==============================================================================*/
/**
* @defgroup StationarityTesting Stationarity Testing and Data Preprocessing
* @{
*
* @brief Functions to determine the order of differencing required for stationarity
* and to adjust the time series accordingly.
*/
/**
* @brief Iteratively applies a Dickey–Fuller style regression test to determine the required differencing order.
*
* @param arr The input time series array.
* @param arr_recov Output array that stores recovery information (used for later drift adjustment).
* @param length The number of observations in the time series.
* @return The order of differencing (d) applied to achieve stationarity.
*
* @details The function creates lagged and lead versions of the series and regresses the lead on the lagged series using LR1.
* If the estimated coefficient is not within ±1.001 of unity, the series is differenced and the test repeats.
*/
int DFTest(double arr[], double arr_recov[], int length);
/**
* @brief Adjusts a differenced series to “recover” the original level by removing the drift.
*
* @param arr The original time series array.
* @param arr_stry The series that will be adjusted.
* @param length The number of observations.
* @param d The differencing order applied.
*
* @details The function performs cumulative adjustments to add back the drift lost during differencing.
*/
void Drift(double arr[], double arr_stry[], int length, int d);
/** @} */ // end of StationarityTesting group
/*==============================================================================
Group: Autocorrelation/Diagnostic Matrix
==============================================================================*/
/**
* @defgroup DiagnosticMatrix Autocorrelation/Diagnostic Matrix (EAFMatrix)
* @{
*
* @brief Computes an extended autocorrelation matrix for model diagnostic purposes.
*
* @details This function calculates correlations between the series and its leads/lags (lags 1, 2, and 3).
* It then fits an AR(1) model using LR1 to compute prediction errors and determines the autocorrelation of these errors.
* Finally, the procedure is repeated for an AR(2) model, resulting in a 3x3 diagnostic matrix.
*/
/**
* @brief Computes the extended autocorrelation function (EAF) matrix.
*
* @param arr The input time series array.
* @param arr_eaf Output 3x3 matrix where each element is the correlation between the series (or its errors) and its various leads/lags.
* @param length The number of observations in the time series.
*/
void EAFMatrix(double arr[], double arr_eaf[][3], int length);
/** @} */ // end of DiagnosticMatrix group
/*==============================================================================
Group: Error Metrics
==============================================================================*/
/**
* @defgroup ErrorMetrics Error Metrics
* @{
*
* @brief Functions to compute forecast error metrics.
*/
/**
* @brief Computes the Mean Absolute Percentage Error (MAPE) between forecasted and actual values.
*
* @param arr_y Array of actual values.
* @param arr_y_cap Array of forecasted (predicted) values.
* @param length Number of observations.
* @return The MAPE expressed as a percentage.
*/
double MAPE(double arr_y[], double arr_y_cap[], int length);
/**
* @brief Computes the Mean Absolute Error (MAE) between forecasted and actual values.
*
* @param arr_y Array of actual values.
* @param arr_y_cap Array of forecasted values.
* @param length Number of observations.
* @return The MAE.
*/
double MAE(double arr_y[], double arr_y_cap[], int length);
/** @} */ // end of ErrorMetrics group