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ABSTRACT

Federated learning (FL) is a type of machine learning where devices locally train a model
on their private data. The devices iteratively communicate this model to a central server
which combines the models and sends the updated model back to all devices. Because
the data stays on the devices and only the model is transmitted, federated learning is
considered as a privacy-friendly alternative to regular machine learning where all data is
transmitted over the internet.

However, the central server used in typical FL systems not only poses a single point
of failure susceptible to crashes or hacks, but may also become a performance bottle-
neck. These issues are alleviated by decentralized FL (DFL), where the peers communi-
cate model updates with each other instead of with a single server.

Unfortunately, DFL is challenging since (1) the training data possessed by different
peers is often non-i.i.d. (i.e., distributed differently between the peers) and (2) malicious,
or Byzantine, attackers can share arbitrary model updates with other peers to subvert the
training process.

We address these two challenges and present Bristle, middleware between the learn-
ing application and the decentralized network layer. Bristle leverages transfer learning to
predetermine and freeze the non-output layers of a neural network, significantly speed-
ing up model training and lowering communication costs. To securely update the output
layer with model updates from other peers, we design a fast distance-based prioritizer
and a novel performance-based integrator. The prioritizer prioritizes the model updates
based on their distance to the peer’s own model and an explore-exploit trade-off, and
the integrator integrates each class of each model update separately based on their per-
formance on a small set of i.i.d. test samples. Their combined effect results in high
resilience to Byzantine attackers and the ability to handle non-i.i.d. classes.

We empirically show that Bristle converges to a consistent 95% accuracy in Byzantine
environments, outperforming all evaluated baselines. In non-Byzantine environments,
Bristle requires 83% fewer iterations to achieve 90% accuracy compared to state-of-the-
art methods. We show that when the training classes are non-i.i.d., Bristle significantly
outperforms the accuracy of the most Byzantine-resilient baselines by 2.3x while reduc-
ing communication costs by 90%.
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PREFACE

A year ago, I thought I had the perfect idea for a master thesis. I wanted to work on a
universal decentralized marketplace that would disrupt the way economies worked, and
it would be built on a blockchain. And of course, at the Delft University of Technology it
is pretty much impossible to say the word "blockchain" without saying the words "Johan
Pouwelse". So, I presented my original idea, learned that I might have overlooked a few
key aspects, changed the subject, changed the subject a bit more, changed the subject
much more, actually changed the subject to something completely different in a few
months time, and started studying the research field that would become the topic of my
thesis: Byzantine-resilient federated learning. The scientific field is incredibly young,
the state-of-the-art can clearly be improved in many different ways, and the use cases
are endless - which is important if you want to write a captivating introduction.

The results of the thesis are interesting and truly an important step forward. The
algorithm that I devised (called Bristle) is very unique. It converges so incredibly fast
that I had to modify the baselines because otherwise the results would be incomparable
with other solutions. In terms of communication efficiency, no baseline comes even
close to Bristle when considering the number of models transmitted, not to mention the
total number of bits transmitted. When the classes are non-i.i.d. (not evenly distributed
between the peers), Bristle blows the other baselines out of the water.

Of course, there are some limitations, the most notable of which are the dependence
on a proper dataset that is suitable for transfer learning, and the inability to handle sit-
uations where the data within a single class is non-i.i.d. between the peers. However, I
truly believe that Bristle can inspire other researchers with its innovative and effective ar-
chitecture and serve as an important step towards the ultimate decentralized federated
learning system.

In hindsight, I’m quite happy with the entire thesis process. Sometimes it was intense
because I combined working on my thesis with a role as project manager / director at a
consultancy organization, and sometimes I spent weeks fixing terrible bugs, the effort
of which would not be mentioned anywhere in the resulting paper. However, I could
always rely on the excellent feedback and support of Dr. Johan Pouwelse who helped to
guide me throughout the entire master-thesis process. A special thanks to Dr. Martijn
de Vos who not only gave superb feedback on a regular basis, but also helped a lot to
polish the final paper and frame it in such a way that it would appeal specifically to the
reviewers of the Middleware conference. I would also like to thank Prof. Martha Larson
for her excellent feedback on my paper.

vii
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Abstract
Federated learning (FL) is a privacy-friendly type of machine
learning where devices locally train a model on their private
data and typically communicate model updates with a server.
In decentralized FL (DFL), peers communicate model updates
with each other instead. However, DFL is challenging since
(1) the training data possessed by different peers is often non-
i.i.d. (i.e., distributed differently between the peers) and (2)
malicious, or Byzantine, attackers can share arbitrary model
updates with other peers to subvert the training process.

We address these two challenges and present Bristle, mid-
dleware between the learning application and the decen-
tralized network layer. Bristle leverages transfer learning to
predetermine and freeze the non-output layers of a neural
network, significantly speeding up model training and low-
ering communication costs. To securely update the output
layer with model updates from other peers, we design a fast
distance-based prioritizer and a novel performance-based
integrator. Their combined effect results in high resilience
to Byzantine attackers and the ability to handle non-i.i.d.
classes.

We empirically show that Bristle converges to a consistent
95% accuracy in Byzantine environments, outperforming all
evaluated baselines. In non-Byzantine environments, Bris-
tle requires 83% fewer iterations to achieve 90% accuracy
compared to state-of-the-art methods. We show that when
the training classes are non-i.i.d., Bristle significantly outper-
forms the accuracy of the most Byzantine-resilient baselines
by 2.3x while reducing communication costs by 90%.
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machine learning; Transfer learning; Supervised learning by
classification; Neural networks.
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1 Introduction
Machine learning applications have gained significant trac-
tion and are widely used for various purposes, such as un-
derstanding consumer preferences [10], recognizing pictures
[42], predicting keystrokes [14], or translating texts [17]. Tra-
ditionally, these applications use neural networks trained on
a single server using a tremendous amount of data generated
by a large number of geo-distributed, heterogeneous edge
devices such as smartphones, IoT devices, or autonomous
vehicles [35]. However, centralized training on data streams
generated by such devices is limited by the following three
factors. First, transmitting training data over the Internet
can pose a significant burden on backbone networks. This
burden is particularly problematic when media such as pho-
tos or videos are used as training data and is worsened by
the fact that most learning applications communicate with
cloud providers over wireless links [46, 78]. Second, main-
taining a central server architecture can quickly become
expensive and time-consuming as the number of devices
increases [24]. Third, transmitting personal and sensitive
information over the Internet, such as text conversations or
photos, to cloud providers raises privacy concerns and is in
certain jurisdictions not even allowed by regulations such
as the US HIPAA [28] and the European GDPR law [75].

Federated Learning (FL) overcomes these three limitations.
With FL, edge devices do not send their data to the server
training the model but instead communicate model updates
to a so-called parameter server, also see the left side of Fig-
ure 1 [15]. The parameter server coordinates the learning pro-
cess by pushingmodel updates to devices (step 1 ), and peers
train the model with their private data on-device (step 2 ).
Then they send the updated model back to the parameter
server (step 3 ), after which the server aggregates the incom-
ing model updates into a global model (step 4 ). FL sidesteps
the need for the data to leave the device, improving pri-
vacy, lowering the computational burden for the server, and
decreasing the communication overhead when the model up-
date is smaller than the data to be transmitted per iteration.
FL is nowadays used for various applications, including next-
word prediction on keyboards [2, 11, 13, 32], speech recogni-
tion [64], wireless communications [12, 59], human activity
recognition [66], and health applications [9, 54, 61, 63].
The centralized architecture shown in Figure 1 is typi-

cal for FL systems. However, even though the parameter
server synchronizes the learning process between remote
edge devices, this approach comes with significant draw-
backs [7, 51, 84]. Notably, the parameter server not only
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Figure 1. Federated learning using a parameter server (left)
and decentralized federated learning (right).

poses a single point of failure susceptible to crashes or hacks,
but it may also become a performance bottleneck as the num-
ber of devices pushing model updates increases [51]. These
issues motivate further research to remove dependency on
the parameter server and train models in a decentralized
manner [22, 44, 51, 73]. With decentralized federated learning
(DFL), each peer is connected to a subset of the other peers
in the network from which it receives incoming models and
to which it pushes its updated models [58]. We visualize this
approach on the right side of Figure 1.

DFL has resulted in a new wave of learning methods that
achieve comparable model accuracy as state-of-the-art FL
approaches [34] while boasting several significant advan-
tages. First, decentralized networks are fault-tolerant by de-
sign since peers continuously update their knowledge about
which other peers are online or stopped communicating[76].
Second, decentralized networks are self-scaling. When a new
peer joins the network, other peers can start communicat-
ing with the newly-joined peer seamlessly. Because there
is usually a maximum number of other peers with which
each peer communicates, the connection ratio will drop, but
the network will typically still be strongly connected [27].
Third, DFL unlocks AI with zero-cost infrastructure (from
the developer’s perspective) since the computational power
needed to train the network is delivered by all peers in the
network working together instead of a parameter server
under centralized control [25].

Limitations ofDFL.Despite the benefits of DFL, we iden-
tify three challenges that reduce its potential for practical
applications. The first barrier is that both existing FL and
DFL architectures have to consider Byzantine attacks, the sit-
uation where malicious peers aim to undermine the model’s
training by purposefully sending specific model updates to
the parameter server or other peers [90]. Since malicious
peers keep their data private, they can easily “poison” their
model and disseminate this malicious model without reper-
cussions. Byzantine attacks are often addressed by the Gradi-
ent Aggregation Rule (GAR), which aggregates and combines

incoming model updates [6, 56, 90]. At the same time, state-
of-the-art GARs typically assume that the majority of peers
act honestly, which is hard to guarantee in networks with
open participation [88].
The second challenge is that the performance of conven-

tional FL systems degrades significantly when being de-
ployed in an environment where the distribution of the train-
ing data differs between peers. This is also known as non-i.i.d.
(not independent and identically distributed) data. Given that
data is typically non-i.i.d. in an FL environment [6, 14, 90],
dealing with non-i.i.d. data is considered a key challenge in
FL [38]. The inability of most GARs to handle non-i.i.d. data
results in Catastrophic Forgetting, a phenomenon where
the peers overwrite model parameters that were important
to predict a particular class distribution with parameters
essential to predict another class distribution [91].

The third challenge relates to the communication require-
ments to disseminate model updates among peers in the
network. In DFL, each peer disseminates a copy of the cur-
rent model at every training iteration to several other peers.
However, modern neural networks may consist of millions of
parameters [33, 36], sometimes requiring gigabytes of data
to be transferred for each model exchange. Facilitating this
amount of data quickly becomes infeasible when the number
of devices and the frequency of model updates increase [62].

Although someDFL systems are to a certain extent Byzantine-
resilient [6, 31, 56, 85], able to deal with non-i.i.d. data [15, 65,
93], or focus on reducing the communication costs [3, 21, 80],
there exists - to the best of the author’s knowledge - no DFL
solution that addresses all three challenges simultaneously.
We argue that such a solution is a key requirement for a wide
deployment of DFL systems.

Our Contributions. To the best of the author’s knowl-
edge [31, 85, 86, 94], only four papers have ever been pub-
lished about DFL that are Byzantine-resilient (first challenge),
none of which are suitable for situations where the data is
non-i.i.d. (second challenge) or decrease the communication
requirements (third challenge). Therefore, we present Bris-
tle: the first Byzantine-resilient and communication-efficient
approach for DFL in environments with non-i.i.d. classes.1
Bristle is a pure edge solution and acts as a middleware
between the machine learning application and the decentral-
ized network layer by combining three techniques:

1. Using deep transfer learning, model training with Bris-
tle converges quickly and achieves high accuracy with
low communication overhead and while requiring low
amounts of on-device data (Section 3.1).

2. With a fast distance-based prioritizing step duringmodel
aggregation based on an explore-exploit trade-off, Bris-
tle pre-filters incoming model updates that are esti-
mated to improve the current model (Section 3.2).

1Bristle is an acronym for "Byzantine-Resilient mIddleware for StochasTic
federated LEarning".
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Figure 2.Our Bristle middleware for decentralized federated
learning outperforms state-of-the-art solutions in a Byzan-
tine and non-i.d.d. environment.

3. With a novel performance-based integrator, Bristle pro-
vides state-of-the-art Byzantine-resilience, even when
the classes are unevenly spread across peers (non-i.i.d.).
Unlike related solutions, this component performs per-
class performance measurements instead of per-model
measurements (Section 3.3).

Similar to related work in the FL domain, Bristle focuses on
supervised learning problems that train a neural network
for classification [55, 56, 81]. We implement all elements of
Bristle as an Android library and open-source our implemen-
tation (see Section 3.4).
With an extensive set of experiments with the popular

MNIST dataset, we evaluate the performance and resilience
of Bristle. We compare Bristle with five related approaches
for FL and quantify the Byzantine-resilience of these ap-
proaches under four attacks in the domain of FL, aimed at
reducing the model’s accuracy. The experiments show that
even in highly Byzantine environments where the classes
are non-i.i.d., Bristle not only withstands all evaluated at-
tacks but also outperforms all related approaches in terms of
convergence speed, accuracy, consistency, and communica-
tion efficiency. We highlight one of the key results from our
experiments in Figure 2, showing model accuracy as peers
train the model. In this figure, the performance of Bristle
and evaluated DFL approaches is illustrated in a Byzantine
(40% of the peers perform a label-flip attack) and non-i.i.d.
environment (the class overlap between the peers is just
40%). Despite this challenging environment, Bristle quickly
converges and outperforms all other approaches in terms of
accuracy while reducing communication costs by over 90%.

2 System and Threat model
We now describe our system and threat model, and state the
assumptions underlying our work.

Network Model.We consider an unstructured, strongly
connected peer-to-peer network with 𝑛 peers. Each peer
knows the network addresses of other peers in the network.

We assume unreliable and unordered network channels be-
tween peers. In addition, we do not place any restriction on
peers joining the system, and peers can join or leave the
system at any time. We consider the mitigation of attacks
targeted at the network layer, e.g., the Eclipse Attack, beyond
the scope of this work.

Training Data. Each participating peer 𝑖 acts on local
training dataset 𝐷𝑖 which size is denoted by |𝐷𝑖 |. Training
data never leaves the device, and 𝐷𝑖 is only known to peer 𝑖 .
In contrast to most related work, we assume that the number
of samples per class is not distributed uniformly among peers
(non-i.i.d), which is a key characteristic of FL environments
[6, 14, 90]. However, we also assume that for each class
the samples are distributed uniformly (i.i.d.) between peers
as a prerequisite for the performance-based integrator (see
Section 3.3).

Model Training. Our approach focuses on supervised
classification problems where the dataset consists of a collec-
tion of input-output pairs. The input is a chunk of data with
a fixed size, and the output is a qualitative label associated
with a class. The devices aim to minimize the loss function
by tuning the parameters in the neural network such that its
predictive capabilities are maximized. We use the negative
log-likelihood of the ground truth class as the loss function.
Since this problem is intractable for complex models, we use,
in line with most literature [47, 70, 71, 90], a technique called
Gradient Descent (GD) which iteratively takes the derivative
of the loss function with respect to the training data and then
moves the hyperparameters in the direction of the gradient.
However, because the local dataset can be large, it can take
a long time for GD to converge [8]. Therefore, we use the
faster Stochastic Gradient Descent (SGD), where a subset
(mini-batch) of five samples is stochastically sampled from
the dataset to update the parameters in a particular iteration.

Threat Model. Our work assumes an environment with
an unconstrained number of Byzantine attackers aiming to
subvert the model’s performance. This includes the Sybil
Attack, an attack where a malicious peer joins the network
under many different identities to prevent model conver-
gence [23]. It also includes collusion, the situation where
malicious peers in concert attempt to undermine model con-
vergence. Byzantine attackers can send arbitrary model up-
dates to any peer in the network, but have no access to the
private samples of benign peers.

3 Bristle: Middleware for Decentralized
Federated Learning

Bristle enables DFL that can handle non-i.i.d. classes and
thwart Byzantine attacks while improving communication
costs compared to existing approaches. We provide a high-
level overview of Bristle and the actions performed during a
training iteration in Figure 3. First, Bristle takes advantage
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Figure 3. High-level overview of Bristle, our middleware for decentralized federated learning.

of deep transfer learning to determine the non-output lay-
ers of each node before the first training iteration (step 1 ).
As we will experimentally demonstrate in Section 5, this
significantly reduces communication costs compared to com-
municating the entire model, speeds up the model conver-
gence rate, and acts as a prerequisite to learning on non-i.i.d.
classes.

The main innovation of Bristle is its two-phased GAR that
integrates received models. During each training iteration,
a peer 𝑖 trains the local model on a mini-batch of their pri-
vate dataset 𝐷𝑖 and only updates the output layers (step 2 ).
It then forwards the updated output layer2 and the output
layers it has received from other peers to a distance-based
prioritizer (step 3 ). This fast distance-based prioritizer esti-
mates the best candidates for integration based on an explore-
exploit ratio and forwards them to the performance-based
integrator (step 4 ). The performance-based integration is
more computationally demanding and integrates the priori-
tized output layers into the peer’s current output layer. This
integration process is both Byzantine-resilient and capable
of continual learning, facilitated by selective updating of
the output layer, per-class performance evaluations, and a
carefully crafted weighted averaging function. Our main
motivation to use a two-staged approach is that a distance-
based prioritizer on itself is ineffective and performance-
based integration on all received models is too computation-
ally expensive since it requires the evaluation of incoming
models on private data. Finally, Bristle transmits the out-
put layer to a few connected peers (step 5 ) and uses the
new output layer as input for the next training iteration
(step 6 ). In the remainder of this section, we elaborate on
the model pre-training, the distance-based prioritizer, and
the performance-based integrator.

2We use the terms output layer and model interchangeably in this work.

3.1 Bootstrapping Bristle with Transfer Learning
In conventional FL settings, the parameters of the entire neu-
ral network are shared with the parameter server or, when
using DFL, with other peers. These parameters include all
weights and biases of the input layer, hidden layers, and the
output layer. In Bristle, we avoid exchanging the full neural
network between peers. Instead, we leverage a popular ML
technique called deep transfer learning which re-uses a neu-
ral network that has been trained on another dataset with
comparable low-level features as the training data (step 1 in
Figure 3) [72]. More specifically, we copy and subsequently
freeze the non-output layers from another model. Bristle
then only trains and exchanges the output layer, which has
three major advantages:

1. Copying the non-output layers from a well-trained
model significantly improves the convergence ratewhen
training the model in a decentralized fashion on de-
vices with lower hardware capabilities.

2. Freezing non-output layers reduces communication over-
head since only the output layers have to be shared
among peers.

3. Freezing the non-output layers is a key step towards
continual learning, which further increases the perfor-
mance and robustness of Bristle (see Section 3.3).

To bootstrap Bristle with a pre-trained model, we must
assume that for the dataset we want to train on, there ex-
ists a vastly bigger dataset with roughly the same low-level
features that we can use to pre-train a similar model. Con-
sidering the extent to which transfer learning is nowadays
used in practical learning problems, we argue that this as-
sumption is realistic and does not prohibitively degrade the
applicability of Bristle [1, 60]. The training of the initial neu-
ral network can be performed offline by system designers or
volunteers. The pre-trained model can then be shared with
peers by bundling them in the (mobile) application or be
served by a trusted server that sends interested peers the
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Figure 4. Average Euclidean distance from a given model
to benign (green) and malicious (red) models, and models
trained on an entirely different data distribution (orange).

pre-trained model upon request. We assume that the devel-
oper knows the number of classes beforehand to determine
the size of the output layer.

3.2 Distance-based prioritizer (DBP)
We now elaborate on the distance-based prioritizer (DBP) in
Bristle (step 2 in Figure 3). The inputs to the DBP are the
output layers received from other peers during the last train-
ing iteration. To explain the motivation behind the DBP, we
first examine Figure 4 where the average Euclidean distance
is shown from a non-i.i.d. model (configured as explained
in Section 5.3) to two benign models (shown in green), a
benign model that is trained on an entirely different data dis-
tribution (shown in orange), and several Byzantine models
(shown in red). The distances in this figure are based on the
models exchanged during our experiments (see Section 5).
For each distance shown in Figure 4, we took the average
distance over 100 runs (with the current and the other model
both trained ten times on different training data) and trained
all models to convergence before comparing the distances.
The figure shows that based on the Euclidean distance alone,
we cannot reliably determine if a certain model is benign
because, in this example, the distance to a Trimmed Mean
attack model is between the distances to two benign models.
However, the distance may clearly help prioritizing certain
models since models with rather low or high distances ap-
pear to be more likely to be malicious.

Based on this insight, we segment the receivedmodels into
three equally-sized categories with a low, medium, and high
distance from our current model. Then, we uniformly sample
models from each of these categories. The number of models
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Figure 5. Proportion of models sampled by the distance-
based prioritizer from each of the three categories, based on
the exploration-exploitation ratio 𝛼 .

sampled from each category depends on the exploration-
exploitation ratio 𝛼 where 𝛼 = 0 exclusively samples low-
distance models (exploitation-dominant) and 𝛼 = 1 exclu-
sively samples high-distance models (exploration-dominant).
The optimal value of 𝛼 depends on the maximum distance
that benign models can reasonably have to each other, which
is highly dependent on the degree of asynchrony (higher
asynchrony → higher 𝛼), the expected ratio of benign to
Byzantine peers (more Byzantine peers→ lower 𝛼), and the
degree of non-i.i.d.-ness (higher non-i.i.d.-ness→ higher 𝛼).
The advantage of using three categories is that in situations
where the accuracy is clearly sub-optimal and a significant
number of Byzantine attackers are present, the developer
may want to emphasize integrating models with a medium
distance since these will often perform best. 𝑓𝑙 , 𝑓𝑚 and 𝑓ℎ
denote the fraction of samples from the low, medium and
high distance categories, and are determined as follows:

𝑓𝑙 = (1 − 𝛼)2, 𝑓𝑚 = −2𝛼2 + 2𝛼, 𝑓ℎ = 𝛼2 (1)
Note that 𝑓𝑙 + 𝑓𝑚 + 𝑓ℎ = 1. Figure 5 visualizes the relation

between the above values and 𝛼 . We also parameterize the
maximum number of models that pass our DBP, denoted by
𝛽 . Since the runtime of our performance-based integrator
scales with the input size, devices with lower performance
can opt for a lower value for 𝛽 .

3.3 Performance-based Integrator (PBI)
The ability of our distance-based prioritizer to recognize
Byzantine or stalemodels that are trained on a lower number
of iterations is rather limited. Byzantine attacks are easy to
launch in open networks, and stale models are a regular
phenomenon in FL systems [49]. To address these concerns,
we assess the performance of each model that passes the
distance-based prioritizer on a small test dataset (step 4 in
Figure 3) using a performance-based integrator (PBI). This
test dataset is a random subset of the full private dataset
owned by the peer.
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Figure 6. The per-class PBI in Bristle. Dashed boxes refer to
values associated with foreign classes.
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Figure 6 shows how the PBI works, given a model with
three classes (𝐴, 𝐵 and 𝐶). In summary, the PBI selectively
integrates the parameters of classes that perform well to
achieve Byzantine-resilience and to handle non-i.i.d. classes
properly. This is different from existing approaches that in-
tegrate each received model as a whole instead. We refer to
the parameters in the output layer that are connected to a
particular class as Class-specific parameters (CSPs). The inte-
gration process in Bristle first evaluates the performance of
each class of each received model on a test dataset (step 1 ).
Based on this evaluation, we compute a certainty score that
estimates how benign a received model is (Step 2 ). Then,
we calculate for all CSPs of each model a weight (step 3 ).
Finally, we integrate the received models into our current
model, based on the computed weights (step 4 ).

The selective integration of parameters is inspired by the
continual learning algorithm CWR* [52] that enables non-
i.i.d. learning by initializing the output layer to zero, applying
a mean-shift, and replicating the hippocampus-cortex dual-
ity by selectively copying and resetting parts of the output
layer. Related work demonstrates that this approach provides
excellent performance in regular non-FL environments and
enables per-class updates [52]. Applying continual learning
requires that the non-output layers are frozen and equal be-
tween all peers. We already addressed this by using transfer
learning (see Section 3.1) to train these layers before the first
iteration.
We now elaborate on the PBI logic, which pseudocode is

given in Listing 1. The input for this algorithm is the current
model of the peer (myModel), and the prioritized models that
passed the DBP (prioritizedModels).

Step 1 (per-class performancemeasurements). Based
on a subset of the local dataset, we first calculate the F1-score
for the CSPs of all familiar classes of both the peer’s own
output layer and the prioritized output layers (line 4-8). We
refer to a class as familiar when the peer has a sufficient
number of samples, denoted by 𝜅, to reliably estimate the
performance of that class of a given model. This threshold is
determined by the developer. With a higher value of 𝜅, the
PBI can more reliably determine F1-scores, but the number
of classes for which insufficient samples are available to
evaluate, also known as foreign classes, might decrease. We
chose to measure F1-scores instead of the accuracy as a
proxy for the performance since the former is more suited
for imbalanced datasets [16]. The data subset used by the
PBI is never used to train the peer’s own model since this
would result in an overestimation of the performance of the
peer’s own model. Since these measurements depend on the
availability of sufficient private data samples, Bristle avoids
integrating models from other peers until sufficient private
data samples are available to test them reliably.

Step 2 (certainty computation). Then, we calculate for
each prioritized model a certainty score, which is a (rough)
estimate of the degree to which this model is benign (line

Algorithm 1 Bristle’s performance-based integrator (PBI)
1: procedure PBI(myModel, prioritizedModels)
2: F1← [], certainty← [], disc← []
3: faWg← [], foWg← [] ⊲ foreign/familiar class weights
4: for m in myModel ∪ prioritizedModels do ⊲ Step 1
5: for c in familiarClasses(data) do
6: F1[m][c]← evaluate(m, c, testData)
7: end for
8: end for
9:
10: for m in prioritizedModels do
11: best← sorted(F1[m]) [:𝜙]
12: certainty[m]← max(avg(best) - std(best), 0) ⊲ Step 2
13: for c in familiarClasses(data) do ⊲ Step 3
14: if F1[m][c] ≥ F1[myModel][c] then
15: disc[m][c]← (|F1[m][c] - F1[myModel][c]| * 𝜂)3
16: else
17: disc[m][c]← −∞
18: end if
19: faWg[m][c]← computeFaWg(disc[m][c], certainty[m])
20: end for
21: foWg[m]← computeFoWg(disc[m], certainty[m])
22: end for
23: ⊲ Step 4
24: myModel.integrateFamiliarClasses(prioritizedModels, faWg)
25: myModel.integrateForeignClasses(prioritizedModels, foWg)
26: end procedure

10-12). This certainty score is determined by subtracting the
standard deviation from the average F1-score of the 𝜙 best-
performing familiar classes (line 11-12), thus rewarding high
class performance and punishing high variation among the
class performance. We do not consider all classes when com-
puting the certainty score since it is not realistic to assume
that all classes of each benign received model perform well
in a non-i.i.d. environment. The larger 𝜙 is, the more robust
the algorithm is against Byzantine attacks, but the less able
it is to learn about foreign classes in the case of a non-i.i.d.
setting.

Step 3 (weight computation). Furthermore, we estimate
for each familiar class of each prioritized model if integrating
its corresponding CSP improves the model’s performance by
simply checking if the F1-score of that class of the received
model exceeds the respective F1-score of the peer’s own
model (line 14). We call the extent to which it does the F1-
discrepancy, and we store this value in a two-dimensional
array named disc. If the class-specific F1-score of the model
being evaluated exceeds that of our ownmodel, we calculated
the F1-discrepancy as in line 15. Otherwise, we set the F1-
discrepancy to −∞ (line 17). The parameter 𝜂 increases the
degree to which high-performing classes are integrated.

The computeFaWg function then computes the weights for
the familiar classes for each model, taking the prior com-
puted scores and certainty as input (line 19). This function
computes the following Sigmoid function, where𝑤𝑐 is the
weight of familiar class 𝑐 , 𝑠 is the F1-discrepancy, and 𝑟 is
the certainty of the model being considered:
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𝑤𝑐 =𝑚𝑎𝑥 (0,
𝜔1
𝑓 𝑎

1 + 𝑒− 𝑠
100
− 𝜔2

𝑓 𝑎) ∗ 𝑟 (2)

This function assigns a weight of one to equally perform-
ing classes and an increasingly higher weight to classes that
show excellent performance, dependent on the values of𝜔1

𝑓 𝑎

and𝜔2
𝑓 𝑎
.𝜔 𝑓 𝑎 represents the boost for above-average perform-

ing models and the bounty for below-average performing
models. The bigger this discrepancy, the faster the model
can catch up with other better-performing models, but the
bigger the impact of a malicious model that performs well
on familiar classes and bad on foreign classes. We multiply
the outcome of the Sigmoid function by the certainty score
calculated earlier because the parameters of a class might
be sub-optimal even when it has a perfect F1-score when
other classes perform poorly. Figure 7 illustrates how the
weight of CSPs is affected by their F1-score on a test dataset,
assuming that the peer’s current model yields a F1-score of
0.5 on that class and that the calculated certainty is 1.

Determining a weight for the CSPs of the foreign classes is
challenging because we cannot directly measure their perfor-
mance. Instead, we take the sum of the scores of all familiar
classes and feed this into the same Sigmoid function as used
for the familiar classes (Equation 2), albeit parameterized
with separate variables 𝜔1

𝑓 𝑜
and 𝜔2

𝑓 𝑜
. This is done by the

computeFoWg function (line 21). 𝜔 𝑓 𝑜 is the extent to which
foreign classes are integrated into the model. The higher this
value, the better the model can be when the peer wants to
use the model to classify formerly foreign classes, but also
the higher the impact when a potentially malicious model
is integrated. If the user is uninterested in achieving high
performance on foreign classes, 𝜔1

𝑓 𝑜
can be set to 0.

Step 4 (model integration). Finally, we replace the CSPs
of familiar and foreign classes with the weighted average of
all CSPs by using the calculated weights (line 24-25).

3.4 Implementation
Bristle is implemented on top of an existing network library
that provides support for peer discovery, decentralized over-
lay creation, and authenticated messaging [67, 68]. Since we
envision the usage of Bristle mostly in a mobile environment,
our middleware is written in the Kotlin programming lan-
guage (the default language for Android applications). We
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Figure 7. Weight assigned to the CSPs given an F1-score of
0.5 and a certainty score of 1.0.

envision that Bristle runs as a background service on the
end-users’ devices to periodically receive or transmit models
from and to peers when the device is connected to Wi-Fi.
Peers transmit model updates using the UDP protocol and
network messages are compressed with Gzip. Model training
is facilitated by the DeepLearning4j library (version 1.0.0-
beta7) to enjoy compatibility with a wide range of advanced
ML algorithms. We have published the Bristle source code
and developer documentation in a GitHub repository.3

Using Bristle. Developers can leverage the Bristle mid-
dleware by feeding the peer’s current model and all received
models into Bristle’s GAR after each iteration and subse-
quently replacing the peer’s model with the result. The mo-
ment a model is updated can be decided by the developer,
for example, model training can take place when the de-
vice is charging to minimize the impact on end users. The
peers should be able to selectively receive and integrate only
models relevant to the current ML application. To this end,
Bristle uses the functionality to form communication groups
as provided by its network library. Deciding on the variables
listed under Section 4 is a key part of machine learning. We
recommend the developer to use heuristics, optimize them
on a related dataset, or use A/B-testing to find the best values
to obtain the desired accuracy on the models.

4 Experimental Setup
We now describe our experimental setup, datasets, and pa-
rameters.

Testbed.All experiments are run on an HPEDL385 Gen10
server. This server is equipped with 128 AMD EPYC 7452
CPUs, has 512 GB of DDR4 memory, and runs Debian 10.

Datasets. In line with related research [55, 56, 81], we
consider an image classification application that applies Con-
volutional Neural Networks (CNNs) to classify images. We
use the popular MNIST [45] dataset, consisting of 60,000
gray-scale training images and 10,000 test images of 28x28
pixels representing handwritten digits. To achieve better per-
formance, we standardize the dataset by applying Z-score
normalization such that the features are re-scaled to a nor-
mal distribution with 𝜇 = 0 and 𝜎 = 1. We pre-train - until
convergence - a neural network with the same configuration
on the EMNIST-Letters [18] dataset, which features resemble
MNIST, but contains characters instead of digits. We then
include the resulting neural network in the Bristle software.

Experiment parameters. We list all default parameters
used during our experiments in Table 1. An exploration-
exploitation ratio 𝛼 of 0.4 slightly prioritizes model with
lower distance.

Non-i.d.d. data. To evaluate Bristle with non-i.d.d. data,
we first sort the data per class, divide the data into equally-
sized shards, and then assign to every peer several shards,

3Source code can be requested through the Program Committee (to comply
with the double-blind review requirements).
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Experiment parameter Default value
Environment
Peers (𝑛) 10
Connection ratio 100%
Fraction Byzantine peers 50%
Machine learning
Mini-batch size (𝑏) 5
Learning rate (𝜆) 0.001
L2-value 0.005
Max. iterations 300
Bristle
Exploration-exploitation rate (𝛼) 0.4
Max. PBI input size (𝛽) 30
#familiar class selection size (𝜙) 3
#test samples per class (𝜅) 10
𝜂 10
𝜔1
𝑓 𝑎
, 𝜔1

𝑓 𝑜
10

𝜔2
𝑓 𝑎
, 𝜔2

𝑓 𝑜
4

Table 1. Default parameters and values used during the
experiments.

which is also the approach taken by related work [19, 77, 79].
We note that the more shards we assign to every peer, the
better every peer can recognize and defend against Byzantine
attacks (see Section 3.3), but the less non-i.i.d. the classes are.
We opt to assign - unless specified otherwise - without loss
of generality to every peer four shards which cover 40% of
the classes to balance between the ability to learn non-i.i.d.
classes and to recognize Byzantine attacks.

Model training.We train the dataset on the same CNN
architecture used by McMahan et al. [55], except that we
use Leaky ReLu instead of the regular ReLu as the activation
function for the hidden layers since the former seems to give
slightly better performance (specifically, suffers less from the
vanishing gradients problem). The model consists of twice a
convolutional layer (kernel size = 5, stride = 1, padding = 0)
followed by a max pooling layer (kernel size = 2, stride = 2,
padding = 0), and finally the output layer (with 800 hidden
nodes). For the output function, we use the softmax function,
and as the loss function, we use negative log-likelihood. To
train the model, we use the Adam optimizer, parameterized
as shown in Table 1. Since these values significantly impact
the model’s performance, we used a grid search with typ-
ically 7-9 values for each parameter and ensured that the
optimal values were approximately in the middle. Although
the baselines were originally not developed to be used in com-
bination with transfer learning, we decided to use transfer
learning for all baselines for all experiments anyway since
the performance increase is so significant that otherwise
any comparison with Bristle would be meaningless (also see
Section 5.1).

Baselines. To compare Bristle with existing methods, we
implemented five other GARs commonly used in FL:

1. FedAvg [55] aggregates all models by coordinate-wise
averaging of parameters. It is commonly used as a
baseline to compare the performance of FL systems.

2. Median [90] aggregates all models by taking the coordinate-
wise mean of parameters. As demonstrated in the lit-
erature, it is already a particularly effective Byzantine-
resilient GAR [87].

3. Krum [6] integrates the model that most closely resem-
bles (in terms of Euclidean distance) all other models
as the new global model. Even if the selected model
is malicious, in theory, the performance should not
degrade too much as it is close to all other models.

4. BRIDGE [85] is specifically designed for Byzantine-
resilient model aggregation in decentralized settings.
It cyclically updates every coordinate one by one and
subsequently applies trimmed-mean screening to ob-
tain the final coordinate for each dimension.

5. MOZI [31] uses a combination of a fast distance-based
and accurate performance-based filter to aggregate
model updates in a Byzantine-resilient manner.

We initialized Krum and BRIDGE, which are dependent on
a-priori knowledge of the number of attackers, with 𝑏 = 4
(the maximum number of attackers) and Mozi with 𝜌 = 0.5
(the ratio of benign to Byzantine peers).

Byzantine attacks. We also evaluate Bristle under the
following four Byzantine attacks, which are commonly con-
sidered in the domain.

1. The Label-flip attack [4] assigns an incorrect label to
each input [4, 29, 74]. We implement this attack by
numbering all labels and reassigning each sample with
label 𝑥 to label (𝑥 + 1) % |𝑥 |.

2. The Additive noise attack [48] adds some noise to the
parameters of outgoing models. When the noise has a
larger variance, it can indeed prevent convergence but
also makes the noise attack easier to detect [48]. Cen-
tering the noise around a value slightly different from
0 allows the attack to prevent convergence despite
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Figure 8. The accuracy of the model while training, for
regular and transfer learning.
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(c) Krum attack
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(d) Trimmed Mean attack

Figure 9. The resilience of Bristle and other GARs against various Byzantine attacks, with 50% of all peers being malicious
and i.i.d. data.

low variance, but since the mean of benign updates
is always centered around 0, this attack can be easily
detected. We consider a variant where each half of the
parameters are set to noise centered around a value
just below and above 0, respectively.

3. The Krum attack [26] specifically targets the Krum
aggregation rule. It is an effective, state-of-the-art at-
tack by iteratively sending attack vectors that will be
accepted by Krum whilst inflicting maximum damage
to the peer’s model.

4. The Trimmed Mean attack [26] targets the trimmed
mean GAR (Bridge in our experiments). It determines
the gradient direction for each parameter of the model
and then creates an attack vector that points exactly in
the opposite direction, scaled per parameter depending
on the values of the other benign peers.

5 Experimental Evaluation
We now evaluate the performance of Bristle. Our evaluation
answers the following questions: (1) what is the achieved
training speedup when applying transfer learning to DFL? (2)
How does Bristle perform in the presence of Byzantine attackers
in terms of model accuracy? (3) How does Bristle perform when
classes are not uniformly distributed over peers (non-i.i.d.) in
terms of model accuracy? (4) How does Bristle perform in an en-
vironment with both Byzantine attackers and non-i.i.d. classes?
And (5) What are the communication and computational costs
of Bristle?

5.1 Performance Gains of Transfer Learning
We first evaluate the performance gains of transfer learn-
ing when all peers are honest, and the data is i.i.d. For each
experiment, we measure after every 10 iterations the per-
formance of all peers and then take the average accuracy,
defined as #𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

#𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 . Figure 8 shows the evolution
of model accuracy for the baseline GARs and Bristle, both
without transfer learning (Figure 8a) and with transfer learn-
ing (Figure 8b). We note that Bristle requires a pre-trained
model and therefore is not included in Figure 8a. Figure 8a
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Figure 10. The performance of Bristle and other GARs when
the data is i.i.d. and non-i.i.d.

shows that the evaluated GARs perform quite similarly, al-
though Mozi has a slower convergence rate since it assigns
lower weights to benign models that have not been trained
sufficiently yet to perform well. Transfer learning dramati-
cally improves both the convergence rate and the maximum
accuracy after 300 iterations of all GARs, which also sup-
ports literature [37]. More specifically, whereas reaching 70%
accuracy takes on average 55 iterations with regular train-
ing, it takes merely four iterations with transfer learning, a
reduction of 93%. Reaching 90% accuracy takes on average
180 iterations with regular learning, whereas it only takes
30 iterations with transfer learning, a reduction of 83%. This
reduction in iterations to reach the desired level of model
accuracy can significantly reduce the load on the network.

5.2 Byzantine Attacks
We now evaluate the Byzantine-resilience of Bristle under
different attackswhen data is i.i.d. Figure 9 shows the effect of
different attacks. Bristle withstands all evaluated Byzantine
attacks and quickly achieves high model accuracy. Figure 9a
shows that the label-flip attack prevents model convergence
when using the FedAvg GAR, but is, despite its relatively
small influence on the model’s parameters, successfully mit-
igated by all other GARs. Figure 9b shows that the FedAvg
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(b) Additive noise attack

0 100 200 300
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

FedAvg
Bridge
Bristle
KRUM
Median
MOZI

(c) Krum attack

0 100 200 300
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

FedAvg
Bridge
Bristle
KRUM
Median
MOZI

(d) Trimmed Mean attack

Figure 11. The resilience of Bristle and other GARs against various Byzantine attacks when the data is non-i.i.d.
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(b) 30% of the peers is malicious
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(c) 50% of the peers is malicious
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Figure 12. The resilience of Bristle and other GARs under a label-flip-attack, with a varying percentage of all peers being
malicious, where the data is non-i.i.d.

and Median GARs are susceptible to the additive noise at-
tack. The Krum attack, shown in Figure 9c, is clearly very
effective against Krum but has only a minor effect on the
convergence rate of the other GARs. The Trimmed Mean
attack, see Figure 9d, is relatively ineffective against any
Byzantine-resilient GAR. This is because all benign models
are very close to each other in this scenario, making it hard
for this attack to steer the model in another direction without
clearly being an outlier.

5.3 Non-i.i.d. Classes
We now consider the scenario where the classes are non-
i.i.d., see Figure 10. In this experiment, there are 10 peers,
each of which has access to two random samples of four
consecutive classes. Thus, each peer 𝑖 has access to classes
{𝑖, (𝑖 + 1)%10, (𝑖 + 2)%10, (𝑖 + 3)%10}. When we compare Fig-
ure 10b with Figure 10a, it is clear that Krum and Mozi fail
to achieve desired model accuracy with non-i.i.d. classes,
and we also observe that Bridge and Median converge sig-
nificantly slower. FedAvg and Bristle show excellent perfor-
mance and achieve 90% model accuracy in 65 and 55 itera-
tions, respectively. This is because thesemethods (eventually)
combine the information learned by every peer, while the
other methods disregard a part of the received models under
the incorrect assumption that those are Byzantine.

5.4 Combining Byzantine Attacks and Non-i.i.d.
Classes

We now evaluate Bristle and other GARs in an environment
containing both Byzantine attackers and where the classes
are non-i.i.d. (see Figure 11). We use the label-flip attack in
all experiments because this one is effective (see Figure 11a)
and very popular in related work [26, 57, 82]. Except for
Bristle, all baselines fare poorly in the Byzantine experiments
with non-i.i.d. classes. Specifically, we observe that FedAvg
is unable to defend against Byzantine attacks, although it
achieves an accuracy of 87% in the first few iterations of
the Krum attack (see Figure 11c). Although Bridge performs
well in the experiments presented in Section 5.2, it performs
poorly under the threat of Byzantine attacks when the classes
are non-i.i.d. Krum is, as expected, unable to defend against
the Krum attack but performs under the threat of the other
attacks roughly on par with Mozi. Mozi shows the same
accuracy as in the benign non-i.i.d. experiments (see Figure 9)
because it successfully defends against Byzantine attacks but
is also maxed out on the poor maximum accuracy that it can
attain on the node’s own dataset. The performance of the
Median baseline varies significantly depending on the attack
andmay be quite inconsistent (as illustrated in Figure 11b and
Figure 11d). An interesting finding is that the TrimmedMean
attack is relatively ineffective in the i.i.d. experiment (see
Figure 9d) but impacts the performance of the same baselines
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Figure 13. The resilience of Bristle and other GARs under a
label-flip-attack, with 30% of all peers being malicious, where
the classes are to a varying extent non-i.i.d.
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Figure 14. The resilience of Bristle and other GARs under
a label-flip-attack, with a varying percentage of the peers
connected, where the classes are non-i.i.d.

significantly in the non-i.i.d. experiment (see Figure 11d).
This results from the greater distance between the benign
models in the non-i.i.d. experiment, giving the attack more
leeway to steer the model in a different direction without
being considered an outlier. Since the PBI assigns a weight of
0 to the malicious CSPs, Bristle consistently outperforms all
other GARs and defends well against all evaluated Byzantine
attacks.

Varying theNumber of ByzantineAttackers.Wenow
vary the number of Byzantine attackers, see Figure 12. Fig-
ure 12a shows that even with 10% Byzantine attackers, the
performance of the baselines already degrades significantly.
Bristle manages to maintain a quick increase in accuracy for
all considered attack scenarios. With 10% and 30% Byzan-
tine attackers, Mozi manages to keep a stable performance
but is limited to predicting only the peer’s familiar classes
correctly. Figure 12d shows that the performance of Krum is
inconsistent and that only Bristle achieves a consistent high
performance. Bristle’s excellent performance results from
the fact that (a) in contrast to Mozi, Bristle evaluates and
integrates the parameters per class instead of per model, and
(b) in contrast to the other GARs, Bristle uses performance
evaluations instead of just distance comparisons.

Varying the Degree of Non-i.i.d.-ness. We now com-
pare the performance of the GARs in three situations where
the classes are to a varying extent non-i.i.d. (see Figure 13).
FedAvg and Bridge are, regardless of the degree of non-i.i.d.-
ness, unable to provide any resilience to the label-flip at-
tack. Mozi defends, similarly to the experiments in Figure 11,
perfectly well against the label-flip attack but is limited to
the maximum accuracy that can be obtained by training on
its own dataset. The performance of Krum increases with
the number of classes owned by the peer. The Median rule
performs relatively well, even when the classes are highly
non-i.i.d. Bristle, however, clearly performs best compared
to all baselines, although its performance decreases when
the peers have only 20% of the data (see Figure 13a).

Varying the Connection Ratio. In larger networks, it
is unrealistic to assume all-to-all dissemination of model
updates. To test the impact of the connection rate on the
convergence rate more accurately, we set up an environment
with 100 peers where the classes are again non-i.i.d. simi-
larly to the previous experiments. We setup two experiments,
connect each peer to a random subset of 2% and 5% of the
other peers respectively, add an equal number of label-flip
attackers that are connected to each benign peer, and mea-
sure the average accuracy over time. From Figure 14a, we
observe that when the connection rate is only 2%, FedAvg
and Median perform very poorly, but also the other GARs
are unable to achieve satisfactory accuracy. When the con-
nection rate increases to 5% in Figure 14b, Bristle and Krum
perform quite well in contrast to the other baselines. Thus,
it seems that in a setting with 100 peers, a connection rate
of only 5% is already almost enough to reach the maximum
accuracy. The number of iterations required to obtain this
accuracy is relatively high compared to a connection rate of
100% (see Figure 11a).

5.5 Bristle Efficiency and Scalability
Figure 15 shows for each GAR the average time it takes for
a peer to finish a single iteration depending on the number
of connected peers. For evaluation purposes we assume that
each peer receives from every other peer exactly one model

20 40 60 80 100 120
number of connected peers

0.0

0.5

1.0

1.5

Ti
m

e 
in

 se
co

nd
s average

median
krum
bridge
mozi
bristle

Figure 15. Average time to complete a single training iter-
ation on the non-i.i.d. label-flip experiment with a varying
number of connected peers.
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at every iteration. The running time of Average is clearly
the fastest, followed closely by Median, Krum, and Bridge.
The fast execution of these GARs results from the usage of
relatively inexpensive operations, such as calculating the
distance between models and sorting the parameters of each
dimension. Mozi is relatively slow because it has to evaluate
the accuracy of each model. Bristle is initially by far the
slowest GAR caused by the performance-based integrator
that evaluates the performance not just for eachmodel but for
each familiar class of eachmodel. However, when the number
of connected peers exceeds 𝛽 (see Section 3.2), adding more
peers has a negligible impact on the speed of Bristle because
the distance-based prioritizer is efficient in reducing the
number of models to 𝛽 .

All baselines consume an equal amount of network traffic
(roughly 3 MB per iteration per peer for our neural network),
but because Bristle transmits only the output layer (roughly
300 KB), the bandwidth requirements of Bristle are reduced
by 90%.

6 Related work
In the last five years, a considerable amount of literature has
been devoted to creating more effective FL systems. Most
work focuses on achieving Byzantine-resilience but also in-
troduces several methods to reduce the bandwidth require-
ments and to improve learning on non-i.i.d. classes.

Byzantine-resilience. Several well-known Byzantine-
resilient GARs are Coordinate-wise Median (CM) [57] which
takes the median across all models for each parameter, Krum
[6] which selects the model that most closely resembles
all other models, and Bulyan [56] which iteratively applies
Krum followed by a variant of CM. However, these GARs use
distances as a proxy for benignness, which it not reliable as
we have seen in Section 3.2. In contrast, performance-based
methods reject or accept received models based on their per-
formance on a test dataset. Examples include RONI (Reject
On Negative Influence) [5] which simply discards all models
with a negative impact on the model, and Zeno [82] / Zeno++
[83] which use a central oracle to estimate the true gradient
and only keep the gradients most similar to this estimation.
Bristle uses distances only to prioritize the received models
and uses per-class performance measurements to integrate
models.

Communication efficiency. Because of the bandwidth
limitations of cellular networks, numerous methods were
proposed to improve the communication efficiency of FL. A
popular method is to quantize the gradients to low-precision
values [3, 21, 80] or only to transmit the most important
parameters (sparse matrix methods) [40, 69]. Bristle only
updates the output layer, which works well together with
existing techniques to reduce the communication overhead.

Non-i.i.d. learning. Several methods enable learning on
non-i.i.d. classes, such as by sharing a small i.i.d. training

dataset across all peers [93] or by reusing non-federated con-
tinual learning techniques [30, 41, 43, 89]. Bristle also lends
several concepts from a non-federated continual learning
technique, namely CWR* [53] (see Section 3.3).

FL systems. Several FL systems try to combine Byzantine-
resilience with learning on non-i.i.d. data. RSA [47] uses
a regularization-based strategy and although it performs
relatively well when the data is non-i.i.d., it fares poorly
against Byzantine attackers. FoolsGold [29] detects and re-
jects attacks executed by multiple sybils working together
and works well with non-i.i.d. data. However, Zhao et al.
[92] show that the Byzantine-resilience of FoolsGold is quite
limited. FLeet [20] uses past observed staleness values and
similarities with past learning tasks to achieve learning on
non-i.i.d. data for a specific type of "soft" Byzantine attacks
(namely the presence of stale models) but is unsuitable for
other types.

7 Concluding Remarks
We have presented Bristle, middleware for decentralized,
federated learning that tolerates Byzantine attacks, even
when the classes of the training data are non-i.i.d. By lever-
aging deep transfer learning, Bristle achieves a high conver-
gence rate despite having a low communication overhead.
Through the combination of a fast distance-based prioritizer
and a per-class performance integrator, Bristle is able to with-
stand attacks targeted at subverting the model accuracy. Our
experimental evaluation using the popular MNIST dataset
has demonstrated these desirable properties and shows that
Bristle exhibits superior performance compared to related
solutions. In this evaluation, we did not focus on privacy,
communication compression, or other aspects that are sup-
plementary to Bristle and addressed in the existing literature.
We have implemented and open-sourced Bristle on GitHub.

Although we believe that Bristle is a significant step for-
ward for DFL, we identify two directions for further work.
First, communication costs could be further reduced by selec-
tively sending parameters to peers with high class overlap.
This can be estimated using Private Set Intersection Cardi-
nality (PSI-CA). One can prevent peers from learning too
much about the class distribution of others, e.g., by adding
noise to the cardinality and by rate-limiting PSI-CA requests.
Second, the accuracy could be increased even more when the
non-output layers can also be fine-tuned rather than being
fixed. Several popular continual learning algorithms are suit-
able for this purpose, such as LWF [50], AR1 [53], or EWC
[39]. However, tuning also the non-output layers requires the
transmission of information about these non-output layers,
significantly increasing the communication costs. Addition-
ally, it is non-trivial to maintain the Byzantine-resilience
property because the parameters in the hidden layers do not
correspond directly with the classes to be predicted.
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SUPPLEMENTARY MATERIAL

This supplementary material complements the thesis article with additional infor-
mation relevant to the thesis committee, similar to several other thesises published in
the EEMCS faculty such as 1 and 2. The supplementary material is composed of four
main sections: extended preliminaries, related work, implementation, and discussion.
In the extended preliminaries, we aim to give the thesis committee members a better
understanding of the basic mechanisms behind machine learning and federated learn-
ing. In the extended related work, we devote significant attention to explaining how
current federated learning technologies aim to solve the challenges related to Byzantine-
resilience, non-i.i.d. data, and communication efficiency. In the extended implementa-
tion section, we give more details about the implementation of the main contribution
and about the setup of the test environment. Finally, in the extended discussion, we dis-
cuss in detail the weaker points of the algorithm and give a large number of directions
for further research. Additionally, we enumerate the biggest issues that we encountered
during the research.
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A
PRELIMINARIES TO FEDERATED

LEARNING

Because Federated Learning (FL) is a relatively new scientific field, we aim to give the
reader in this section a better understanding of the basic idea behind FL. In the next
section, we will zoom in on more advanced FL systems.

A.1. BASIC IDEA BEHIND FEDERATED LEARNING
In traditional machine learning, we aim to minimize the global cost function, risk func-
tion, loss function, or score `(θ) by finding the optimal model θ∗:

θ∗ = ar g mi n
θ

E(
x, y

) ∈ D
`

(
fθ (x) , y

)
(A.1)

In this equation, θ is the model, D is a distribution over X x Υ (with X denoting the data
and Υ denoting the corresponding labels), and `(θ, i ) is the loss of model θ on dataset
instance i . This loss function is a proxy for the actual error to be minimized and is usually
the negative log-likelihood of the ground truth class in a classification problem.

This optimization problem is known as risk minimization, but unfortunately solving
this problem is intractable for more complex models. Therefore, a technique called Em-
pirical Risk Minimization (ERM) is commonly used where a dataset M is sampled i.i.d.
from D . The optimal model can then be estimated by calculating:

θn = ar g mi n
θ

1

|M |
∑

(x, y)∈M

`
(

fθ (x) , y
)

(A.2)

A popular technique to optimize this function is called Gradient Descent (GD) which
iteratively takes the derivative of the loss function with respect to the training samples
and then moves the hyperparameters in the direction of the gradient:

θt+1 = θt −λ∇θ` (θ, i ) (A.3)
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However, because the dataset can be large, it can take a long time for gradient descent to
converge. A faster approach, used by almost all ML algorithms today, is to use Stochastic
Gradient Descent (SGD), [1] where a subset (a minibatch) of the dataset is selected to
update the parameters [2, 3]. As a result, SGD produces faster but noisier updates than
GD, but this noise is not necessarily a drawback as it also helps the algorithm escape
local minima. An important requirement for SGD to converge is that each minibatch is
an unbiased sample of the true distribution, usually achieved through uniform random
sampling [4].

The most straightforward way to apply stochastic gradient descent in a distributed
or federated setting is to use a single server (called the parameter server) and several
clients. The parameter server distributes and aggregates the global model w =⋃

i∈N wi ,
and each client i trains the model that it obtained from the server before sending back
the result wi [5, 6].

The most trivial implementation of stochastic gradient descent in federated learning
systems is called FedAvg [7]. FedAvg aggregates the models owned by the peers by using
coordinate-wise weighted averaging. It was introduced by Google and is still extensively
researched from both an applied and theoretical perspective [8]. For non-convex param-
eter spaces, averaging models can yield poor results since good models can converge in
different directions, but neural networks are mostly convex when they are sufficiently
over-parameterized and therefore not very prone to bad local minima [9–11]. The pseu-
docode for FedAvg is given in Algorithm 1.

Algorithm 1 FedAvg: basic centralized federated learning executed on a single server and
a set of clients
1: Input
2: B local minibatch size
3: K set of nodes
4: m number of nodes per iteration
5: E #local epochs
6: η learning rate
7: D set of local datasets
8: procedure SERVER

9: Initialize w
10: for each round t = 0, 1, 2, . . . do
11: S[t] ← (random set of m clients from K )
12: for each client k in S[t] in parallel do
13: w’[k][t+1] ← ClientUpdate[k][w[t]]
14: end for
15: w[t+1] ← 1∑

k∈S[t ]|D[k]|
∑

k∈S[t ] |D[k]|∗w ′[k][t +1]

16: end for
17: end procedure
18: procedure CLIENT(k)
19: B[k] ← (split D[k] into batches of size B)
20: for each local epoch e=0, 1, ..., E do
21: for batch b in B[k] do
22: w ← w −η∇l (w ;b)
23: end for
24: end for
25: return w to server
26: end procedure



B
RELATED WORK

Over the past five years, a significant amount of articles have been written about tackling
the major obstacles to wide-scale adoption of FL. Three important challenges are - as
explained in the Introduction section of the main article - the mitigation of Byzantine
attacks, the ability to handle non-i.i.d. data, and the reduction of the communication
costs. In this section we conduct a thorough literature review and investigate existing
methods proposed to tackle these challenges.

B.1. BYZANTINE-ATTACKS
A very popular (and simple) federated learning technique to combine the model vec-
tors is to simply take their average. Obviously, when a single Byzantine node transmits
a model with extremely low or high values, the average significantly changes, and the
model become worthless. Such an attack is easy to detect, but there are many more so-
phisticated attacks that, even with a single Byzantine attacker, can considerably reduce
the model’s performance and are much more difficult to detect[12].

Byzantine attacks can be classified into data poisoning or model poisoning attacks,
and untargeted or targeted attacks as shown in Table B.1.

Untargeted Data poisoning [13–18]
Model poisoning [19, 20]

Targeted Data poisoning [14, 17, 21–29]
Model poisoning [28, 30–35]

Table B.1: Classification of attacks

B.1.1. DATA POISONING VS MODEL POISONING ATTACKS
Data poisoning attacks such as [13–18, 21–29] train the model with dirty samples to sub-
vert the performance of the learned model to such an extent that the model becomes
worthless. They were introduced by Gu et al. [22] to attack support vector machines and
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later extended to many other ML algorithms including neural networks. The most popu-
lar data poisoning attack is a label-flip attack, where the labels of two or more classes are
changed [14, 17, 30]. One might think that sending completely random numbers would
also be an effective attack. However, because the mean of completely random numbers
is 0, the network will still converge when the standard deviation is not too extreme [36]
(in fact, adding noise to the parameters is a popular method called differential privacy
that is used to improve the user’s privacy[37–39]).

While data poisoning attacks are based on the manipulation of training data, model
poisoning attacks (introduced by [30]) such as [19, 20, 28, 30–35] manipulate the model’s
parameters before sharing the updated model with other nodes. Consequently, every
data poisoning attack can be imitated with a model poisoning attack [40] because ma-
nipulating the training data is only a means to manipulate the model’s parameters. A
simple model poisoning attack is the Gaussian attack, where some of the gradient vec-
tors are replaced by random vectors sampled from a Gaussian distribution with large
variances. Because model poisoning attacks give the attacker full control over every sin-
gle parameter, they can be much more effective as recent research has shown [12, 33, 41].
More sophisticated attacks can even be used to replace the entire global model with a
model of the attacker’s choice (model replacement attack), given a carefully chosen scal-
ing factor [30].

B.1.2. UNTARGETED VS TARGETED ATTACKS

Another way to classify Byzantine attacks is to group them into untargeted and targeted
attacks[40]. Whereas untargeted attacks (also known as convergence-prevention attacks
[31] or poisoning availability attacks [42]) such as [13–20, 41] aim to prevent convergence
and reduce the global model’s accuracy [20, 41], targeted attacks (also known as (seman-
tic) backdoors, Trojan threats, stealth attacks, or poisoning integrity attacks [42]) such as
[14, 17, 21–35] aim to alter the model’s behavior in specific situations while keeping the
total accuracy as high as possible to mislead Byzantine-defense mechanisms [30, 33].
Without proper defense mechanisms, federated learning is susceptible to both untar-
geted and targeted attacks [14].

In targeted attacks the attacker aims to manipulate the model so that it misclassifies
only certain classes. Popular examples are a label-flip attack or a trigger attack (which is
based on an almost invisible attacker-chosen pattern of pixels). A particularly effective
attack is described by Bhagoji et al. [32] who use an alternating minimization strategy
(alternately minimizing training loss and boosting specific parameters for the malicious
objective). A more sophisticated attack is proposed by Xie et al. in [28] who note that
all backdoor attacks until then used embeddings of the same global trigger pattern for
all Byzantine parties. They then propose distributed backdoor attacks (DBA) where the
global trigger pattern is decomposed into local patterns which is then embedded in dif-
ferent Byzantine parties, thus making the attack harder to detect, easier to bypass robust
aggregation rules, and being more effective. In line with this contribution, Baruch et
al. [31] show that targeted model poisoning attacks can become both significantly more
effective and harder to detect when adversaries are able to collude.

Backdoors are a specific type of targeted attacks where the accuracy of the model is
not impacted for any benign sample, but only for samples manipulated with a specific
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pattern that only the attacker knows. Detecting these backdoors is an NP-hard problem
by a reduction from 3-SAT [43] and unlikely to be detected using gradient based tech-
niques. To illustrate this, Wang et al. [43] explain how it is relatively easy to develop
a so-called edge-case backdoor which forces a model to consistently misclassify seem-
ingly easy inputs that are unlikely to be part of the regular training data. Because these
backdoors only need to modify a small part of the model [40], they look quite similar to
benign updates and require fewer adversaries than untargeted attacks.

B.2. BYZANTINE-RESILIENCE

In this section, we provide an extensive overview of Byzantine-resilient defense methods
(since the main contribution of this thesis is also a Byzantine-resilient defense method)
and categorize these methods into five distinct categories.

Byzantine resilience can be divided into weak and strong Byzantine resilience [44].
Weak f-Byzantine resilience implies that despite the presence of f Byzantine nodes, the
network will almost certainly converge to some value. Strong f-Byzantine resilience im-
plies that the network not only converges in the presence of f Byzantine nodes, but also
converges to approximately the right value. In this thesis we will focus on strong Byzan-
tine resilience.

An interesting observation made by Haykin [45] is that a “mild” Byzantine worker can
actually improve the performance of the system. This has to do with the fact that the op-
timization function of a neural network is often not entirely convex but has many local
optima. By providing the “wrong” direction, a little bit of noise (or a “mild” Byzantine at-
tack in that regard) can pull the optimization function out of a local minimum so that the
network can converge to a better global minimum [46–48]. This is also the reason why
SGD works so well: a randomly drawn sample is inherently more noisy (higher variance)
than the average of all samples [49] and may pull the network out of a local minimum.
However, stronger Byzantine attacks can pull the network away from the global mini-
mum in which case they subvert the network’s performance.

There are several types of Byzantine-resilient defense mechanisms (usually referred
to as Gradient Aggregation Rules (GARs) in the literature) that are often segmented into
distance-based GARs and performance-based GARs. Distance-based GARs are based on
the calculation of some kind of distance between potential malicious attack vectors and
some other vector(s). They are usually efficient but also vulnerable to elaborately de-
signed Byzantine attacks [31, 41]). Performance-based GARs are based on testing the ac-
curacy of a potentially malicious model on a small representative dataset. They are usu-
ally computationally quite expensive, depend on the availability of a test dataset, and are
usually quite effective [50]. Other ways of segmenting these algorithms is whether they
are centralized (dependent on the availability of a single server), by their degree of di-
mensional Byzantine resilience [50] (namely, the maximum number of tolerated Byzan-
tine workers), their ability to handle non-i.i.d. data, and their ability to perform well in
asynchronous settings. The most notable GARs that we will discuss are compared based
on these aspects in Table B.2.
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B.2.1. DISTANCE-BASED SCREENING
Screening the distance of potentially malicious incoming model updates to the peer’s
own trusted model is by far the most popular method to evade Byzantine attacks, which
should come as no surprise. Measuring the distance is relatively efficient, does not de-
pend on an additional dataset, special hardware features, or an additional server, and it
provides excellent protection against relatively simple attacks. However, although this
class of algorithms is effective against simple attacks such as Gaussian noise and label-
flip attacks, the performance is bad when more advanced attacks are used[51]. This
is due to an implicit and somewhat erroneous assumption of distanced-based GARs,
namely that short distances between model parameters imply comparable performance.
Additionally, when the data is non-i.i.d. between peers, the distance between benign
gradient updates can be large, resulting in the rejection of these updates by distance-
based GARs. Moreover, when the peer’s own model is extremely stale, all incoming mod-
els that are up-to-date have a high distance and are thus considered outliers, making it
hard for the peer to catch up.

Krum [52] is a particularly influential algorithm which selects the model that most
closely resembles (in terms of Euclidean distance) all other models as the new global
model. Even if the selected model is malicious, the performance should not degrade too
much in theory since this model is relatively close to all other models. Despite theo-
retical guarantees for the convergence for certain objective functions, Krum appears to
perform poorly compared to other algorithms [53] and often converges to an ineffective
model [20]. The deficient performance stems from the ability of Byzantine workers to
make a substantial change in a single parameter without significantly influencing the
total distance due to the typically high dimensionality of the parameters [20]. Baruch et
al. [31] elaborate upon this insight and argue that since only a single model is selected
and even the best benign worker will have a few parameters deviated far from the mean,
Krum performs worse than other GARs that integrate data from multiple models into
the final model. The authors also briefly discuss Multi-Krum, which achieves compara-
ble accuracy at a faster rate by using the average of a number of local gradients obtained
by Krum.

CTM / CM [12, 54, 55] are two simple distance-based GARs. Coordinate-wise Trimmed
Mean (CTM) simply cuts off the smallest and largest b values in each dimension of the
incoming vectors and Coordinate-wise Median (CM) takes the median in each dimen-
sion. CTM needs at least 2b +1 models where b is the maximum number of attackers.
CM does not depend on an a-priori specified number of attackers, but does incur a per-
formance hit because each dimension must be sorted to get the median.

GeoMed / MeaMed [50] were compared by Xie et al. [50] under non-convex settings
with Krum. The Geometric Median(GeoMed) is defined as [50, 52, 56]:

ar g mi n
v ∈Rd

n∑
i=1

∥ v − ṽi ∥ (B.1)

This formula can be interpreted as the point for which the square distance to all other
points in an n-dimensional space is minimized. The Mean around the Median (MeaMed)
is defined as the mean value of the n − q indices closest to the median, where q is an
arbitrary value. The authors find that Krum, Multi-Krum, and the Geometric Median
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perform worst, the Marginal Median has considerable variance, and the Mean around
the Median performs best. The Geometric median not only performs poorly, but also
dominates the training time in large-scale settings [57].

(Geometric) Median of Means [56, 58–62] is a variant on the Geometric Median that
first partitions all received vectors into k batches, then computes the mean for each
batch, and finally takes the geometric median of the k batch means. Chen et al. [56]
extend the techniques described in [62] with arbitrary/adversarial outliers. However,
their algorithm fails even when there is only a single Byzantine node in each mini-batch
and is thus not reliable.

Bulyan [20] combines the strengths of Krum and CM by iteratively applying Krum to
select a number of models followed by a variant of CM. More specifically, Bulyan finds
for every dimension the n parameters closest to the median and then takes their mean
value. A notable disadvantage of Bulyan is its speed and the stringent condition that it
imposes on the number of Byzantine nodes, namely #nodes ≥ 4 x #nodesby zanti ne +3.
A year later, the authors extend Bulyan to Multi-Bulyan, in the same way as the extension
of Krum to Multi-Krum, but unfortunately they did not report the results [44].

SignSGD [63] was developed to reduce the network traffic resulting from the afore-
mentioned GARs by transmitting only the sign of each dimension of the gradient at each
iteration. Since the global model is updated with an element-wise majority vote on the
signs of the received gradients, the algorithm is in fact a median-based algorithm that
also makes it robust against certain Byzantine attacks and guarantees convergence when
the noise behaves along certain conditions [64]. However, one of these conditions is that
the data is i.i.d., which is typically not the case in federated learning environments[65].
Sohn et al. make SignSGD more robust against MITM-attacks, but do not address the
case where nodes themselves are malicious[66].

RSA [67], confusingly having the same name as the well-known cryptosystem, is in
contrast to the aforementioned methods able to handle non-i.i.d. data in a setting with
multiple adversaries. It aims to prevent incorrect gradient aggregation by letting every
node store and update a local version of the global model. These local version are then
aggregated by the server by means of an `p -norm regularization term regularizing the
magnitudes of malicious messages. RSA is somewhat non-i.i.d.-resilient: it performs
significantly better than Krum and median-based methods but achieves even in a mildly
Byzantine non-i.i.d. environment an accuracy of just 56% on MNIST. All GARs described
until now assume a federated setting where a single parameter server iteratively updates
the global model. However, these algorithms do not translate well into a decentralized
setting (which is the focus of this thesis) because decentralized GARs require consensus
between all peers which is usually not required for distributed learning. To the best of
our knowledge, there are only three papers that attempt to achieve Byzantine-resilient
decentralized learning by adopting a truly distance-based strategy, namely ByRDiE [68],
BRIDGE [69], and some extension of BRIDGE [70].

ByRDiE [68] recognizes that regular CM algorithms are suboptimal in vector-valued
problems, because simply minimizing the objective function along each coordinate in-
dependent of all other coordinates yields the wrong solution (unless all dimensions are
truly independent, which is generally not the case). The authors overcome this limitation
by cyclically updating every coordinate one by one in a decentralized manner and sub-
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sequently applying trimmed-mean screening to obtain the final coordinate for each di-
mension. Given a strictly convex loss function, ByRDiE is proven to always converge (al-
though not necessarily towards an optimal solution). However, although ByRDiE might
be efficient in terms of required training samples, it is inefficient in terms of network
communication because it only updates one coordinate at a time [53]

BRIDGE [69] aims to significantly reduce the network communication for high di-
mensional problems and still achieve decentralized Byzantine-resilience by combining
CTM with SGD. The same authors later showed better performance for BRIDGE than
for CTM [53], which is surprising because BRIDGE boils down to CTM in a distributed
environment. Upon closer examination, this happens because the authors use a 0.7 con-
nection ratio between the nodes to evaluate BRIDGE and only (the authors conveniently
omitted this number so that the reader has to calculate it himself) a 4×#max by zanti ne nodes+
1 = 4×2+1 = 9; 9 / 20 nodes = 0.45 connection ratio between the nodes to evaluate
CTM. Peng et al. [70] show that BRIDGE’s ability to handle non-i.i.d. data can be im-
proved by adding a total variation (TV) norm penalty to allow some outliers. This likely
reduces the ability of the algorithm to defend against noise attacks, but unfortunately
the authors omitted these results from the paper. He et al. [71] also extend BRIDGE to
non-i.i.d. settings, but do this by re-introducing the central server that we wanted to
omit in a decentralized setting in the first place.

One of the most recent articles about this topic is [72] which select the models with
the smallest Euclidean norm to be averaged for the updated model, but for some reason
the authors decided to evaluate its performance by measuring the loss function. The loss
function of neural networks is extremely noisy and also relatively unreliable compared
to an evaluation using a validation dataset, thus making it hard to properly estimate its
performance.

An interesting distance-based method is described in [73] where the authors con-
struct a graph where the nodes (representing models) are connected by a vertex only
when their Euclidean distance is small enough, and subsequently solve the maximum
clique model to find the set of models that are similar to each other and therefore prob-
ably benign. Unfortunately, the authors only evaluate trivial label-flip attacks, so it is
unclear how effective the algorithm is in a more challenging environment.

B.2.2. PERFORMANCE SCREENING

Although distance-based screening methods can be quick and effective to filter out “un-
usual” models, they will not include benign models when these models are quite dif-
ferent from the other models (e.g., when the data is non-i.i.d. or the peer’s own model
is very stale) and also allow an attacker to let the model drift towards a bad solution.
Performance-based solution such as [27, 74–78] detect malicious models based on their
impact on the model’s accuracy given a test dataset. A major advantage of performance-
based solutions is that, whereas many other GARS assume that the number of adversarial
workers is always less than half of the total number of workers, performance-based so-
lutions typically ensure convergence even when the number of adversaries exceeds the
number of benign nodes [76, 78–82]. From all these papers, we want to seriously criticize
the paper written by Zhao et al. [78] because, aside from the fact that it contains serious
grammar errors and completely incorrect references, it also includes a major error about
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when label-flipping attacks are preferred above backdoor attacks. The authors say that
label-flipping attacks are more effective in a scenario where data samples with the same
label are quite similar while the latter is more suitable for scenarios where samples with
the same label are quite diverse. This is incorrect: you want to use label-flipping at-
tacks as an effective way to fool or prevent convergence of a model without any serious
byzantine-resilient GAR while you want to use backdoor attacks to trick the model to
misclassify certain input data without letting anyone notice that you are malicious (see
Section B.1.2). The authors also assume that agents share which labels they own, which
is absurd: the whole purpose of a federated learning environment is to keep the user’s
data (including the labels) private.

RONI [74] / TRIM [42] are the most basic types of performance-based GARs. RONI
(Reject On Negative Influence) removes training examples with a negative impact on the
accuracy of the model. TRIM finds a subset of the training dataset given a pre-specified
size and set of hyperparameters that maximize the accuracy. TRIM is, at least according
to the authors, more effective than RONI. Both methods were originally intended to filter
out bad training data on a single node, but Fang et al. [41] converted and applied RONI
and TRIM to a federated setting and found that in a federated setting RONI gives slightly
better performance.

Zeno [83] / Zeno++ [82] were introduced by Xie et al. for synchronous environments
and asynchronous environments respectively. Both use a centralized oracle that esti-
mates based on a validation dataset the true gradient and only keeps the gradients most
similar to this estimation. The performance of both GARs is quite good according to
Yang et al. [53], but they depend on a centralized parameter server and need access to a
sufficiently large unbiased validation dataset.

PDGAN [84] works quite differently compared to the other approaches and uses a
Generate Adversarial Network (GAN) to reconstruct the training data used by the peers
to train the network. Based on this data, the accuracy of the received models can be
estimated reliably after a large number of iterations (needed to train the GAN). However,
since the training data used by the peers is supposed to stay private, it is actually quite
disturbing that GANs are able to reconstruct this data [32, 85], and are, in that regard,
also a “highly impactful and prioritized” [86] attack in their own right.

Mozi [51] was an important inspiration for this thesis and first applies a distance-
based strategy to quickly select a candidate pool of probably benign nodes, and then
screens the resulting nodes based on their performance on a test dataset (performance
screening).

B.2.3. PRUNING

Since backdoor attacks (see Section B.1.2) are extremely challenging to detect, an en-
tirely different class of GARs called “pruning” defenses has been proposed, specifically
aimed at preventing these backdoor attacks [87–89]. Pruning defenses use a represen-
tative subset of the global dataset (partially violating the FL assumption [40]) to evalu-
ate which neurons in the neural network are inactive. These neurons are important to
find and subsequently remove because they enable attackers to create a backdoor in the
model [22].

Unfortunately, even when these inactive neurons are removed from the model, more
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sophisticated backdoor attacks are still possible [90]. After all, the boundary between a
neuron being unused or being actively used is vague. There are several other methods
aimed at detecting backdoors [77, 88, 89, 91–96], but these methods either assume that
there is a central server that can access the whole training dataset and scan the samples
for malicious samples (which is clearly impossible in a federated learning system) or that
there is a holdout set of similarly distributed data available (which cannot help defend
against more sophisticated model poisoning attacks as discussed in Section B.1.2).

B.2.4. BEHAVIORAL-BASED

FoolsGold [14] is an algorithm that detects and rejects attacks executed by multiple
sybils working together. The authors observed that when sybils collude to poison a
model, their “behavior is more similar to each other than the similarity observed amongst
the honest clients”. However, Zhao et al. [78] showed that FoolsGold is unable to defend
against a powerful attack performed by a single node instead of multiple colluding sybils,
and can also be evaded by decomposing a distributed attack into several orthogonal vec-
tors.

Whereas all GARs discussed so far attempt to make it as difficult as possible for an at-
tacker to manipulate the system, there is also a wide variety of GARs that take a different
approach and aim to eliminate any incentive for a node to attack the system. A trivial ap-
proach where a parameter server simply assigns a reputation based on a performance-
based screening procedure (such as [81]) does not work well, because a Byzantine at-
tacker can first build up an excellent reputation, and then suddenly significantly subvert
the model’s performance, empowered to do so thanks to its good reputation. A better
approach appears to be to reward and punish participants based on their contributions,
something that can be facilitated in decentralized environments through a distributed
ledger [97–112], usually a blockchain. This ledger can also be used to save global model
parameters to enhance the system security [100, 104].

Kang et al. [113] introduced reputation as a means to determine the reliability of
each node and subsequently proposed a GAR based on these reliability scores[114], us-
ing RONI to calculate reputations when the data is i.i.d., and FoolsGold to calculate rep-
utations when the data is non-i.i.d. . For this to work, the authors (implicitly) assume an
environment where nodes have a strong identity so that attackers cannot create a large
number of sybils.

Zhao et al. [115] also assign a reputation to nodes that contribute well, but their
algorithm is seriously flawed: the authors use KRUM to determine if an update is benign
(which is highly unreliable [53]) and then increase / decrease a node’s reputation when
the update is accepted / rejected respectively, implying that you can make for every good
contribution also a bad contribution. However, in practice a single bad contribution can
significantly damage the model while the impact of a single good contribution on the
model is generally quite limited.

Whereas all former approaches assume that the individual workers might be Byzan-
tine, [116] assumes a centralized setting where the parameter server might be Byzantine.
They use a blockchain to audit all model updates from all peers so everyone can verify
that the parameter server aggregates the model updates correctly. The authors also train
an autoencoder to spot outliers (i.e., Byzantine attack). This seems to work fairly well,
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but the autoencoder is only effective after it has been trained properly which may take
many iterations.

Another blockchain-based approach called HoldOut SGD [97] first segments the nodes
into a set of workers and a voting committee. The workers use their data to train the
model for a single iteration and the voting committee votes for the best proposals and
stores this information on a blockchain (similar to [107, 117]; The voting committee is
selected on the basis of Proof of Stake (Pos) and Verifiable Random Functions (VRFs)).
The method is fully decentralized but requires that the maximum number of Byzantine
attackers is limited to 1/3rd of all nodes. The technique is hardly scalable to a large num-
ber of nodes, because each node in the voting committee has to evaluate every single
update. Additionally, a significant amount of time is spent idling for each node because
either all voting committee nodes are waiting for the workers to be finished or vice versa.

Although the blockchain papers mentioned above are of reasonable quality, one has
to be very careful when searching for literature about this subject. There are many papers
where a blockchain is used for federated learning without understanding its (dis)advantages.
For example, Lu et al. [103] say that they want to address privacy issues by using a
blockchain, but simply using a blockchain does not magically improve the user’s pri-
vacy. The authors also state that Directed-Acyclic-Graphs (DAGs) are a certain kind
of blockchain (which is incorrect, they are different technologies. Stating that DAGs
and blockchains are both examples of Distributed Ledger Technology (DLT) would have
been correct) and that DAGs use cumulative Proof of Work (PoW), which is also incor-
rect: DAGs usually just reference and validate previous transactions without any PoW
involved.

A particularly good paper where the authors really take advantage of DLT’s strengths
is written by Schmid et al. [106]. The authors use a Tangle to represent the approved
transactions as nodes in a DAG. For each new transaction, the system first verifies two
previous transactions by using a distance-based or performance-based screening pro-
cedure. When the transactions are approved, the previous transactions are merged with
the current model to represent the updated model parameters.

There is also a considerable body of literature that uses behavioral techniques to in-
centive nodes with high quality training data to participate in the training process such
as [98, 108–111, 113, 114, 118–130] and Stackelberg game methods [121, 130–132], but
since these methods are not intended to defend against Byzantine attacks, we leave them
out of the scope of this thesis. In addition, the underlying assumption that agents should
be given some kind of incentive to participate in a federated training process does not
seem to apply in many popular FL applications, such as Gboard, Captcha, or Google Fit.

B.2.5. OTHER

There are several articles that discuss innovative GARs that are not easy to classify into
a particular category. There are a few papers that use Trusted Execution Environments
(TEEs) to achieve some form of security, such as [110, 133–136]. Bonawitz et al. use
secure aggregation based on the Secure Multi-party Computation (SMC) algorithm to
aggregate the values of untrusted nodes without revealing these values, enabling a pa-
rameter server that each party can fully trust [133]. Sabt et al. discuss how TEEs can also
be used as a defense technique [136], whose insights are later used to create a generic
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GAR Condition
on [M, b]

No prior
information about

#attackers

Ability to learn
non-i.i.d.

classes

Decentralized

FedAvg[7] N/A N/A 3 5
CM[12] M ≥ 2b+1 3 5 5

CTM[12] M ≥ 2b+1 3 5 5
GeoMed[50] M ≥ 2b+1 3 5 5

Krum[52] M ≥ 2b+3 5 5 5
Multi-

Krum[52]
M ≥

2b +m +2
5 5 5

Bulyan[20] M ≥ 4b+3 5 5 5
RSA[67] M ≥ 2b+1 3 3 5

SignSGD[63] M ≥ 2b+1 3 5 5
ByRDiE[68] M ≥ 2b+1 5 5 3

D
is

ta
n

ce
-b

as
ed

BRIDGE[69] M ≥ 2b+1 5 5 3

RONI[74] M ≥ b +1 3 5 5
TRIM[42] M ≥ b +1 3 5 5
Zeno[83] M ≥ b +1 5 5 5

Zeno++[82] M ≥ b +1 5 5 5
PDGAN[84] M ≥ b +1 3 5 5

Pe
rf

o
rm

an
ce

-b
as

ed

MOZI[51] M ≥ b +1 3 5 3

FoolsGold[14] M ≥ b +1 3 3 5
DRACO[57] M ≥ b +1 3 5 5

O
th

er

Bristle (this
work)

M ≥ b +1 3 3 3

Table B.2: Overview of the most notable GARs

framework that can be used to integrate TEEs in a federated learning environment [134,
135]. Weng et al. [110] developed DeepChain that, on the one hand, uses a blockchain
to incentivize parties to participate in the training process, and, on the other hand, uses
a combination of Intel Software Guard Extensions (SGX) enclaves and homomorphic
cryptographic functions to provide a safe and privacy-preserving system. Their solution
works well, but is also computationally very expensive, limiting its use cases.

There are also a few solutions that model defending against Byzantine attacks as
a learning problem. Ji et al. use a Recurrent Neural Network (RNN) and an auxiliary
dataset to aggregate gradients in a Byzantine-resilient manner [80]. The idea is that a
machine learning approach can detect attacks that are difficult to detect for other more
straightforward algorithms. Unfortunately, since their RNN is a “black box”, the authors
are unable to give any theoretical guarantees. A year later, the same author uses varia-
tional autoencoders with spectral anomaly detection to detect malicious updates based
on their low-dimensional embeddings [19]. By removing the noisy and irrelevant fea-
tures, the anomalous (malicious) model updates can be distinguished from the benign
updates in a low-dimensional latent feature space.

DRACO [57] is a well-cited example of a final type of GARs we would like to highlight:



B.3. NON-I.I.D. DATA

B

31

GARs based on replicating the training process over multiple nodes [57, 66, 137, 138].
When nodes are benign, they will report the same results when give the same training
data (under several assumptions). While the accuracy of these GARs is often illustrated
by rigorous theoretical guarantees, they typically assume a centralized server with either
a copy of the data or the ability to globally shuffle the data, making the algorithm inap-
propriate for a decentralized federated learning environment. DRACO lets the parame-
ter server send the same chunk of data to multiple workers and uses majority voting to
find the correct evaluation. When the number of benign nodes is larger than the number
of Byzantine nodes, DRACO is very robust, but the algorithm scales poorly to a greater
number of attackers. For example, when there are just 5 attackers, each chunk already
needs to be calculated 5×2 + 1 = 11 times.

B.3. NON-I.I.D. DATA
Whereas in regular distributed learning environments, a characteristic of a typical fed-
erated learning environment is that data of the nodes is non-i.i.d. (not independent and
identically distributed) [12, 52, 56]. In this thesis, we focus on a specific type of non-i.i.d.
data, namely non-i.i.d. classes. When the classes are non-i.i.d., the number of samples
available for each class differs between peers (but the data distribution of the samples
available for a each class can still be i.i.d. between peers). This results in models that can
be quite different between peers, making it hard for peers to distinguish between benign
and malicious models. To make matters worse, even though McMahan et al. [7] origi-
nally showed that a trivial average of the parameter updates (FedAvg) achieves desirable
accuracy in non-i.i.d. situations, this statement has been debunked by [7, 139, 140]: the
model performs significantly worse than when it would have been trained by a single
node on all data combined.

In Table B.2 we see that the number of GARS able to handle non-i.i.d. classes is very
limited. In this section, we evaluate what techniques exist to learn non-i.i.d. classes
when there are no Byzantine models present.

Figure B.1: Overview of existing CL methods [141]

The challenge of building a single
global model by combining multiple lo-
cal models trained on different data dis-
tributions without reducing its accuracy
is closely related to Lifelong Learning (of-
ten called Continual Learning in the deep
learning community [142]). Continual
Learning is concerned with preventing
Catastrophic Forgetting or Catastrophic
Inference, a phenomenon where a neu-
ral network completely forgets what it has
learnt before when it is taught a new task.
Instead, the network should be able to
continuously acquire new knowledge, re-
fine existing knowledge, and prevent new
tasks from interfering with existing knowledge.

Figure 4 is a Venn diagram created by Lesort and Lomonaco [141] categorizing the
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existing CL methods into four partially overlapping categories:

Architectural approaches seek to allocate additional neural nodes whenever they are
required or freeze specific weights [143–145], but this requires the developer to know the
number of tasks / samples per task a priori and leads to scalability issues for large neural
networks. Two pioneers in this field are Lomonaco and Maltoni who first developed
CWR [146], a dual-memory model that aims to replicate the hippocampus-cortex duality
by selectively copying and resetting the output layer of the network. A year later, the
authors extended CWR to CWR+ by implementing mean-shift and zero initialization for
the output layer [147], and eventually to CWR* by replacing batch normalization with
batch renormalization and weight constraining by learning rate modulation [148].

Regularization techniques minimize the extent to which the most important weights
are overwritten by training on a new model. Elastic Weight Consolidation (EWC) [149],
which was based on Learning without Forgetting (LwF) [150] is an influential regular-
ization technique that extends the loss function with a quadratic penalty for the change
in parameters important to previously learned tasks. The authors use the diagonal of
the Fisher information matrix as a proxy for the importance of the parameters, which
works well for learning permutations of the same task, but not for learning entirely new
categories incrementally [151]. Several improvements have been made since such as
[152–155].

Rehearsing old samples interleaved with new samples is also an effective way to pre-
vent catastrophic forgetting. [140] concluded that globally sharing just 5% of the training
data can result in 30% greater accuracy. These training samples can be selected ran-
domly or carefully to be as representative of the coreset as possible. However, this ap-
proach increases the amount of memory needed to store all samples [156–159].

Generative replay is a variant of rehearsing old samples where a Generative Adver-
sarial Network (GAN) is used to artificially generate samples that have a similar distribu-
tion as the past experiences. These samples are then intertwined with the new empirical
training samples just like in rehearsal-based strategies [160–162].

The approaches discussed so far are generic multi-task learning techniques, but sim-
ilar techniques have also been researched specifically for federated learning environ-
ments.

Chen et al. [163] present an example of a non-i.i.d. approach for federated learning,
but the authors use clusters which do not work well on high-dimensional data (such as
neural networks): the authors simply discard all parameters of the neural network except
for the first 288 parameters in the first layer. The technique presented by Zhao et al. [140]
is more effective and uses a rehearsal-based strategy: they assume that a small amount
of i.i.d. data is available that can be shared across all peer nodes.

In specific situations where the loss function is convex and its conjugate dual is ex-
pressible, research has shown that dual coordinate ascent approaches such as Mocha en
Cocoa can yield superior results [140, 164–166]. Mocha [166] handles non-i.i.d. datasets
well and also tackles the challenge of fault tolerance, stragglers, and communication ef-
ficiency. The algorithm models the relation between the tasks by adding a loss term and
subsequently uses a primal-dual formulation to solve the optimization problem. How-
ever, it assumes that all peers participate in each training round which makes Mocha
inconvenient to use in a truly federated setting.
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A particularly popular approach to use in federated learning systems seems to be
Elastic Weight Consolidation ([167–171]) which, as explained earlier in this section, pe-
nalizes major changes of parameters that are important to previously learned tasks. It
is somewhat surprising that more recent methods such as CWR(+/*), LWF, or AR1 have
not been investigated yet because these methods perform significantly better in non-
federated environments than EWC [172]. Our solution is based on CWR*[148], but we
do want to mention that there is a small error in the original paper: the authors mention
that their short-term memory implementation tw is modeled after the cortex region in
the human brain and that their long-term memory implementation cw is modeled af-
ter the hippocampus. This is incorrect: the short-term memory tw is modeled after the
prefrontal cortex, the long-term memory cw is modeled after the cerebral cortex, and
the transfer mechanism between the short-term and long-term memory is (with a bit of
imagination) modeled after the hippocampus [173]. We also think that working mem-
ory and consolidated memory are more accurate terms than short-term and long-term
memory.

Another way of handling data heterogeneity is by combining the models of nodes
with similar data distributions. For example, Bellet et al. [174] and Vanhaesebrouck et al.
[175] presented fully decentralized federated learning systems where nodes learn their
own personalized version of the model together with other nodes that have a similar
data distribution. A major challenge is to determine which peers have a similar data
distribution when the data distribution is private information, and how to determine if
subtle variations in the data distributions are Byzantine or benign.

B.4. COMMUNICATION-EFFICIENCY
In DFL, each peer disseminates a copy of the current model at every training iteration to
several other peers. However, modern neural networks may consist of millions of param-
eters [176, 177], sometimes requiring gigabytes of data to be transferred for each model
exchange. Facilitating this amount of data quickly becomes infeasible when the number
of devices and the frequency of model updates increase [178]. The following formula
bounds the number of bits that are transmitted by every node during the training [179]:

b ∈O
(
(H(∆W )+η)∗|W |∗Ni ter ∗ f

)
(B.2)

where H (∆W ) is the entropy of the model’s parameters, η is the difference between the
minimum and the actual update size given a certain degree of entropy, |W | is the size of
the model, Ni ter is the total number of training iterations performed by the client, and f
is the communication frequency. Each of these variables can be optimized to reduce the
number of bits transmitted.

In the literature, the methods to decrease entropy of the model’s parameters H (∆W )
are often categorized into quantization and sparsification techniques, although arguably
a better categorization would be to distinguish between sketched updates and struc-
tured updates (of which quantization and sparsification techniques are an example respectively)[180].
Sketched updates refer to the compression of the full model update by performing struc-
tured random rotations, transmitting subsamples of the model which are then averaged
to derive an unbiased estimate, or by using probabilistic quantization [181] where the
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gradients are quantized to low-precision values. The latter option has been researched
extensively. Whereas SignSGD and its variants ([63, 182]) quantize the gradient of each
parameter to a single bit, Feldman et al. [183] generalized the algorithm to a low-bit SGD
version. Similar efforts were made by Alistarh et al. [184], Wen et al. [185], and Zhou et
al. [186].

Structured updates refer to the restriction of the model updates to a pre-specified
structure, i.e., low-rank structure or sparse matrix. A low-rank structure expresses each
update as a product of two matrices, one of which is randomly generated and kept con-
stant during the communication rounds, whereas the other is transmitted to the other
nodes. Sparse matrix approaches are extremely popular and well-researched because
the compression ratios are significantly higher than other methods such as quantiza-
tion [184, 187]. Strom [188] noted that most parameters of a neural network are close
to zero and therefore suggested to transmit only gradients greater than a predetermined
constant threshold (a method later improved by [189]). Because this threshold is hard to
determine, since it varies greatly depending on the layer and the architecture, many later
works aimed to select gradients without using a fixed threshold. Dryden et al. [190] and
Aji and Heafield [191] select a fixed proportion of the parameters to be transmitted, Chen
et al. [192] adjust the compression rate dynamically based on local gradient activity, and
Tao et al. [193] propose the eSGD algorithm that assigns weight values to the parameters
based on an increase or decrease in the training loss and communicates only the pa-
rameters with the highest weights. Whereas all algorithms mentioned so far resulted in
(a minor) loss of accuracy, Lin et al. [194] manage to achieve excellent compression re-
sults with no loss of accuracy by using momentum correction / factor masking, warm-up
training, and gradient clipping. Instead of selectively communicating weights, Luping et
al. [195] only transmit the model if the accuracy of the updated model is sufficiently
higher than the former model. Tang et al. [196] introduce the ideas discussed so far in a
decentralized environment.

There is also some research that focuses on decreasing the communication frequency,
although this research is limited. Hu et al. [197] proposes ADSP that lets nodes transmit
their model at strategically decided intervals, and Wang et al. [198] optimize the trans-
mission frequency based on the resource budgets between all participating nodes.

Bristle significantly reduces the communication overhead by fixing the non-output
layers of each peer and only transmitting the final output layer. This is an example of
structured updating.
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In this section, we provide additional implementation details about the design of the
entire system to increase the replicability of the study and improve the reader’s under-
standing of the results. The full source code is publicly available on Github: the main
repository1 contains the source code of the Android application and the attacks / GARs,
and the IPv8 repository2 contains the source code of the coordinator program and the
scripts used to generate the figures. All Kotlin code was written in Kotlin v1.4.32 and all
Python code was written in Python 3.7 . The most notable libraries used are listed in
Table C.1

Library Version
org.deeplearning4j:deeplearning4j-core 1.0.0-beta7
org.nd4j:nd4j-native 1.0.0-beta7
org.bytedeco:opencv 4.4.0-1.5.4
org.bytedeco:leptonica 1.80.0-1.5.4
org.jetbrains.kotlinx:kotlinx-serialization-runtime 1.0-M1-1.4.0-rc

Table C.1: Most important libraries used

C.1. ENVIRONMENT
We use two separate ways to test Bristle’s performance, namely by means of a central-
ized simulation on a single emulator and a decentralized simulation on up to 16 com-
pletely independent emulators. The experiments are run on an HPE DL385 Gen10 server
equipped with 128 AMD EPYC 7452 CPUs, 512 GB of DDR4 memory, and Debian 10. The
emulators are configured with 6GB of free disk space, 3GB of RAM, and Android 11 (API
30). This limit of 16 emulators is hardcoded in the Android Device Bridge (the software

1https://github.com/jverbraeken/trustchain-superapp/tree/master/fedml
2https://github.com/jverbraeken/kotlin-ipv8/tree/master/distributed-automation
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used to communicate with Android devices), making it highly unpractical to run more
emulators simultaneously. However, 16 emulators are enough to get a good idea of how
the different GARs perform and therefore used for most experiments. For the local sim-
ulation, we run a single program that iteratively trains and combines up to 128 models
to simulate a small-scale federated setting. Running an experiment in a local simulation
is relatively slow because a single emulator can only use a single CPU core (so 16 emu-
lators are able to use 16 CPU cores, significantly decreasing the experiment time). The
results of the local simulation are similar to the results of the decentralized emulators
when these emulators are configured to run at the same speed.

C.2. NETWORK PROTOCOL
The peers need to communicate with each other to be able to learn a model collabo-
ratively. Since we envision Bristle to be used in decentralized systems, the peers need
to be able to find each other and communicate with each other in a fault-tolerant and
effective way. Therefore, we use IPv8 [199, 200], a well-established decentralized peer-
to-peer (P2P) middleware stack used by i.a. the popular Tribler media sharing system
[201, 202]. To enable peers to discover and communicate with other peers that use our
FL technology, we create a new IPv8 community. Within this community, we define sev-
eral new message types and create the corresponding message handlers to (a) commu-
nicate model updates, (b) send a heartbeat signal, (c) instruct the execution of a new
experiment, (d) communicate the results of an evaluation, (e) signal that the experiment
is finished, and (f) introduce a peer to multiple other peers simultaneously to decrease
the time it takes for all peers to discover each other. Furthermore, we extend the com-
municate protocol of IPv8 with two significant performance enhancements to make the
system more effective.

The first improvement is an extension to the Trivial File Transfer Protocol (TFTP).
TFTP is the file transfer protocol used by IPv8 and is limited to transmitting only a sin-
gle file at a time. Our extension enables parallel transmission of multiple files between
the same two peers, implemented by assigning a unique file identifier to each file and
prefixing each data packet with this identifier to keep track of all packets.

The second improvement is the implementation of a faster alternative to TFTP, namely
uTP (micro-Transport Protocol). Our uTP implementation is the first one written in
Kotlin. It significantly decreases the transmission time compared to TFTP and mitigates
the poor latency and congestion control problems found in regular TCP implementa-
tions while providing reliable and ordered packet delivery. These advantages are real-
ized by sending multiple packets simultaneously and slowing down the transmission
rate when the network seems to get congested. Unfortunately, the uTP implementation
is not entirely stable (as discussed in Section D.1), which is why we ended up using the
modified TFTP version for the experiments.

C.3. EXPERIMENT ORCHESTRATION AND DEPLOYMENT
Running the experiment on each emulator is infeasible to do manually for a large num-
ber of emulators. Therefore, we created a separate coordinator program that orchestra-
tion the entire experiment pipeline. Based on the current operating system (Windows or
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Linux) and the current state of the emulators (whether they exist, they are running, and
root access is obtained) it executes several scripts to create, start, and initialize the em-
ulators with the correct configuration. When the emulators are correctly initialized, we
increase the network buffers significantly to prevent packets from being dropped due to
insufficient space. By redirecting the ports, the emulators can communicate with each
other through the host machine. The peers send periodically a heartbeat message to the
coordinator to signal that they are still alive. When the coordinator misses multiple sub-
sequent heartbeats from a peer, the peer is forcefully killed and restarted. The tasks are
described in a dedicated JSON file, and the performance evaluations are written to a CSV
file.

Figure C.1: A screenshot of the user inter-
face

Subsequently, the evaluations are fed into the
post-processing pipeline where they are collected,
processed and eventually transformed into the de-
sired figures.

C.4. INITIATION OF TESTS

There are three ways to run an experiment on the
app that we designed, namely by using the user-
interface, command-line arguments, or network
requests.

C.4.1. USER-INTERFACE

The user interface was developed to give the user a
convenient way to run a federated learning exper-
iment and is illustrated in Figure C.1. The "trans-
fer" button trains a transfer model on the dataset
selected in the UI. The training is executed as con-
figured by the user in the UI dropdown menus,
uses all samples available in the dataset and stops
after a pre-configured number of iterations. This
number of iterations must be set manually to the
number of iterations where the network is con-
verged (i.e., the accuracy stops increasing) but is
not yet overfitted. The trained model is saved on
the emulator and can be copied to other emula-
tors. The "run locally" button runs the experiment
as configured in the dropdown menus as a regular
(non-federated) ML experiment. This is useful to
tune the network parameters when you have a new
dataset. The experiments are run without trans-
fer learning by default. The "run" button and all
numeric buttons in the three rows below are used
to simulate a subset of the experiments which is
hard-coded by the developer for each button. The
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configuration of these simulations is defined in a
JSON file instead of the UI, because a single button
may run multiple simulations with different con-
figurations. All experiments are run both without
and with transfer learning. This means that the
transfer model must be trained before the exper-
iments are run and that Bristle (which depends on transfer learning) is skipped in the
experiments without transfer learning.

C.4.2. COMMAND-LINE ARGUMENTS
Because clicking on the right buttons for each experiment can be tedious, another option
is to launch the app with an array of command line arguments. These arguments have
an equivalent function to the options available in the UI and allow the user to easily run
a specific experiment with a specific configuration.

C.4.3. NETWORK REQUEST
The third way to run experiments is used to run them distributed over a set of inde-
pendent emulators (see Section C.3). After the emulators are initialized, the coordinator
program sends an experiment request including the exact training configuration to all
peers simultaneously.

C.5. OPTIMIZATIONS
We optimized and re-implemented several methods to make them more efficient. The
following list of optimizations is not exhaustive and may be extended in the future.

• Whereas the default dataset iterator implementation loads all training data from
the external storage when a new experiment starts, we store the training data after
it was loaded for the first time in a global memory pool that is accessed for subse-
quent runs.

• Whereas the default dataset iterator implementation requires the modification of
the dataset to obtain a custom data distribution, we map, after the data was loaded
for the first time, each class of the dataset to all corresponding samples. Subse-
quently, we can efficiently sample the right number of samples for each class for
each experiment.

• Whenever the size of a data collection is known in advance, we use primitive arrays
instead of lists or boxed primitive arrays to reduce the memory consumption and
improve the speed with which elements at a certain index can be accessed.

• Whereas the Deeplearning4j method that converts an ML array to a primitive ar-
ray performs checks on each element, we eliminated these checks to significantly
decrease the computation time.

• For extremely large for-loops (namely, to construct the model poisoning Byzantine
attacks), we increased the performance of the multiple invocations of the random
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access library function by segmenting this function into code that only needs to
be run once and code that needs to be executed on every call.

• Using the profiler, we found out that the Kotlin code to calculate the minimum /
maximum value of an array and to calculate a random number in a certain interval
took a significant amount of time due to the large number of invocations. There-
fore, we decided to micro-optimize these Kotlin functions by removing all checks
and unused extension functionality, significantly increasing their performance.





D
DISCUSSION

We believe that Bristle is an important step toward Byzantine-resilient and communication-
efficient decentralized, federated learning with non-i.i.d. classes. Nevertheless, no soft-
ware package is perfect and there are always certain aspects that can be improved. In
this section, we aim to give the reader a large number of ideas for future research based
on insights that we gained during the development of Bristle. Additionally, we list several
of the biggest issues that we encountered during the research to give the reader a better
understanding of the challenge to develop Bristle.

D.1. THE ROAD AHEAD
• In this thesis, we focus exclusively on cases where the classes are non-i.i.d. (i.e.,

the number of samples available for each class differs between peers) and where
the data per class is i.i.d. (i.e., the data distribution of the samples for a given class
is similar between all peers). Although the ability to handle non-i.i.d. classes is
an important step forward, we did not investigate how Byzantine-resilience can
be achieved when the data per class is non-i.i.d. One possibility is to add a Total
Variation (TV) term that allows the integration of received models even when they
perform slightly worse than the peer’s own model on the peer’s test dataset. This
results in an inherent trade-off that can be mathematically formalized: let’s define
P as parameters trained on a different data distribution of which a peer has insuf-
ficient samples to estimate their benignity reliably. Then, a TV that increases the
extent to which parameters P can be integrated results in a higher ability to learn
non-i.i.d. data and in a lower ability to defend against Byzantine attacks.

• Bristle uses a distance-based prioritizer to reduce the number of models processed
by the computationally expensive performance-based integrator. However, as dis-
cussed in the paper, calculating distances is unreliable when the data is highly
non-i.i.d. Additionally, its computation time scales linearly with the number of
parameters, which may become a problem when the number of parameters is
very large. Future work may address these limitations by using an (additional)

41
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reputation-based filter that determines the peer reputation and uses it to discard
models received from clearly Byzantine nodes.

• In the current implementation, we assume that the total number of classes is known
a-priori. This limitation can be overcome by creating a global mapping between
classes and CSPs (class-specific parameters; the parameters of the output layer re-
sponsible for the prediction of a particular class) and dynamically composing the
output layer from all CSPs relevant for each peer.

• For this thesis, we used the MNIST dataset to evaluate Bristle. MNIST is among
the most popular ML datasets used in the literature and especially popular for su-
pervised classification problems. However, the dataset is relatively easy to learn
which reduces the applicability of the results to complex real-world problems. A
more challenging alternative is CIFAR-10, but the problem with this dataset is the
opposite: it is incredibly difficult to learn, as illustrated by the poor performance
in other studies[203–205]. A very popular and reasonably challenging dataset is
ImageNet which contains a large number of classes with lots of heterogeneity be-
tween the samples. Unfortunately, we were unable to use such datasets for our
experiments due to hardware limitations: the size of our hard disk is 500 GB, while
the size of ImageNet is 150 GB (which must be stored on 16 distinct emulators,
resulting in 150 x 16 = 2400 GB). Also the computation time is a considerable prob-
lem: the Android emulators are unable to use a GPU and are thus forced to execute
the machine learning on the CPU instead. Unfortunately, CPUs are relatively slow
to learn ML models. The time to run the relatively simple MNIST experiments
is several days to run the current experiments and will be significantly longer for
larger datasets.

• We chose to supply every peer with only 7 samples of each class: 2 to be used
for training and 5 to be used for the performance-based integrator. This num-
ber of training samples is very low on purpose because it increases the challenge
to achieve satisfactory accuracy and the benefit that can be gained from using the
knowledge obtained by other peers. The number of samples used for the performance-
based integrator entirely depends on the expected number of Byzantine attackers,
the risk appetite of the user, and the degree of non-i.i.d.-ness between samples
from the same class. Further research may develop concrete guidelines for the
number of samples needed for the performance-based integrator.

• We evaluated Bristle by varying several parameters such as the attack type, trans-
fer learning usage, number of Byzantine nodes, degree of non-i.i.d.-ness, and con-
nection ratio. However, there are many more parameters that we can vary, which
may yield surprising insights. In future work, we intend to evaluate the impact of
momentum, batch normalization, use of different datasets, different number of
hidden layers, different communication patterns, various modes of asynchrony,
and highly imbalanced datasets on Bristle’s performance.

• Bristle is based on the CL technique CWR*, which fixes the non-output layers and
only updates the output layer. There are other methods like AR1 or EWC that are
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(in certain cases) more effective by allowing updates also the non-output layers.
Unfortunately, it is hard to combine these methods with Bristle’s mechanism to
prevent Byzantine attacks: Bristle updates parameters based on their ability to
predict a particular class correctly, but the only parameters associated with the
prediction of just a single class are the parameters in the output layer. Future re-
search may investigate this issue by using a multi-factor analysis that combines
the difference in the accuracy of all classes with the weights of the neural connec-
tions between the output layer and the non-output layers.

• All current GARS (including Bristle) transmit the model after each training itera-
tion. It might be possible to still achieve excellent results when the model is trans-
mitted only after a number of iterations which can significantly reduce the com-
munication costs.

• An important assumption made by Bristle is that for a given ML problem, there
exists another large publicly available with roughly the same low-level features.
Such a dataset is crucial for effective transfer learning. It would be fascinating to
evaluate how "similar" a dataset should be to obtain satisfactory results.

• The uTP implementation is, as discussed in Section C.2, unstable and therefore not
suitable for practical purposes. After a very large number of packets are sent/received,
the packet delivery stalls for unknown reasons that are challenging to debug.

• Bristle was specifically developed for supervised classification problems. Future
research may investigate how Bristle’s architecture may be applied to other ML
types, such as unsupervised ML or regression problems.

• Peers with a significant class overlap (i.e., between their familiar classes) are more
likely to integrate each other’s model than peers with very little class overlap. There-
fore, the communication costs can be reduced by receiving models only from peers
with a large class overlap. This class overlap can be measured while keeping the
data distribution of each peer private by using private-set intersection cardinality
(PSI-CA) methods. An efficient PSI-CA implementation was proposed by Shamir,
Rivest, and Adleman [206], called SRA, and was later rediscovered (or not properly
referenced) by Cristofaro et al. [207]. Although a peer cannot directly determine
the exact classes that another peer owns by using PSI-CA, it is easy to obtain this
information indirectly by simply submitting an exhaustive set of PSI-CA requests
[208]. To avoid this, one may modify the first step of SRA by requiring the peers to
submit at least a minimum number of classes (the higher the number, the better
the confidentiality; when peers do not have enough classes, they can always add
noise as padding) and enforce a limit on the number of PSI-CA requests accepted
per peer and also on the number of PSI-CA request accepted in total per day (nec-
essary because an attacker may create multiple distinct sybils that collaborate to
determine the peer’s classes). Unfortunately, given enough nodes and time, an
attacker can eventually always determine which classes are owned by a particular
peer due to the nature of the class-overlap problem, but these measures may make
it significantly more difficult to do so for a large number of nodes.
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• As discussed in Section B.1.2, targeted backdoor attacks are NP-hard to detect.
Therefore, we did not focus on detecting this type of attack in this thesis. How-
ever, instead of detecting these attacks, it is possible to reduce the ability to ex-
ecute them by pruning unused neurons (as mentioned in Section B.2.3). Future
work might address the development of a Byzantine-resilient GAR that is highly
effective against any attack rather than just one particular type.

D.2. BIGGEST ISSUES ENCOUNTERED
While working on my thesis, I encountered several major drawbacks that did cost me a
significant amount of time. I want to highlight a few important ones to illustrate this:

• It was a challenging issue to make separate local emulators communicate to each
other. First of all, it turned out that TFTP (the only network protocol available
in IPv8) was unable to send and receive multiple files to/from the same peer si-
multaneously. After I rewrote it, it turned out that it was way too slow to transmit
the entire model via localhost between all peers for every iteration. Therefore, I
had to implement an entirely new network protocol, namely uTP. It is very time-
consuming and intense to get a network protocol to run correctly, because there
are many threads doing lots of things in parallel on multiple emulators and when
the connection suddenly crashes after several minutes, it requires a lot of effort to
debug where it is going wrong (for example, I had to replace HashMap by Concur-
rentHashMap to prevent threading issues, but this caused deadlocks so I had to
use proper mutexes and coroutines). Unfortunately, modern debugging software
is still uncapable of breaking the program’s execution at the moment of the crash
and then go a few steps back, which complicates the debugging process signifi-
cantly. It took more than a week to find out why packets sometimes got lost when
transmitted over localhost: the local network buffers were too small.

• Another source of problems for network communication over localhost was the
CPU scheduler of Linux. Originally, a peer sends a message to another peer and
then writes to its memory that it had send the message. However, when the CPU
scheduler decides to pause the peer just after it had sent a message to another peer,
then lets the other peer respond, and then resumes the execution of the former
peer, then the response of the other peer was received before the next line (writing
to its memory that the peer had sent the message to the other peer), causing the
program to crash in a way that was terrible to debug.

• An issue on which I could not find anything on the internet, and which took days
to solve was that the debugger could not attach to the emulator. By pure luck I
eventually discovered that it happened only when Android Studio and IntelliJ Idea
are running simultaneously. I have reported this bug to IntelliJ.

• Another issue that I came across is that the performance profiler of Android Studio
cannot stop profiling when a coroutine is being executed. It works correctly when
I would change the coroutine to a thread. I have also reported this bug to IntelliJ.
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• A very irritating limitation of developing for Android is that Google hard-coded a
limit of 16 emulators to run simultaneously. The only way to run more emulators
is to either run emulators inside other emulators, or to change the limit in the C++-
code and recompile the emulator software. For the sake of time, I decided to just
stick to 16 emulators.

• There are no proper deep-learning libraries available for Java and there are no Java
ports available for proper deep-learning libraries in other languages. The best li-
brary currently available for Java is DeepLearning4j (DL4J), which is not being (se-
riously) maintained anymore[209]. Apart from the fact that fixing all dependencies
took days (since all tutorials and documentation were outdated) and fixing issues
such as incorrect internal rounding errors (adding and then subtracting gives in
DL4J a different result than first subtracting and then adding) and working around
hard-coded obsolete URLs inside the library was non-trivial, it also has a serious
bug somewhere in its memory management, causing the library to crash when
it trains multiple networks on different threads simultaneously. Since the source
of this error is buried deep inside the C-layers, I decided to run the experiments
sequentially.
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