Joost Verbraeken
Supervised by Dr. Pouwelse and Dr. de Vos

Practical Byzantine-resilient, yet decentralized
federated learning

A thesis written by Joost Verbraeken examining the state-of-the-art and proposing
Pro-Bristle, a new technique to improve byzantine-resilience in asynchronous non-
i.i.d. settings

1. Abstract

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 1

Introduction
(glossary)

1.1. Why machine learning?

2. Statistics is a branch of mathematics concerned with
explain and gathering insights from historical data, for example
to understand consumer preferences, determine the core
components of human personalities, or to illustrate how
economic policies affect the society. However, statistics has its
limitations: it can be notoriously hard to create a highly accurate
model, the statistical techniques available for making predictions
about the future are relatively limited, and the use-cases are
limited to clearly specified domains (in contrast to fuzzy domains such
as the generation of completely new songs based on previous songs).
Machine learning gained traction over the last few decades
thanks to the discovery of several novel and powerful techniques,
such as Support Vector Machines and Random Forests. These
techniques are used for a wide variety of tasks such as multimedia
recommendation, handwriting recognition, speech-to-text
systems, digital translators, etc., but these methods depend on
carefully extracted features and often yield sub-optimal accuracy.
In the last decade, neural networks became popular thanks to
their versatility, ability to learn to extract proper features
themselves, and highly effective predictions. Neural networks
consist of a series of layers, each with a number of artificial
neurons. Each neuron is linked to a number of other neurons in
the previous/next layer by a connection associated with a certain
weight. When a neuron is activated, it checks if the combined
activation it gets from all nodes in the last layer exceeds a certain
threshold (i.e. its bias) and then propagates this activation to the
nodes in the next layer to which it is connected. These weights
and biases are constantly adjusted in the neural network through
a process called back-propagation so that the network actually
starts to “learn”.

2.1 Why distributed learning?

Training a neural network on a single machine is possible when
the amount of data is relatively limited. However, for more
complex applications (such as self-driving cars, image recognition, or
music generation) the amount of training data required can easily
exceed the maximum capacity of a single machine. [25] describes
in detail how a new scientific field called Distributed Learning
aims to distribute the training data and/or the neural network
across many nodes, often implemented by combining an army of
slave nodes that perform the calculations with a master node
(often called the parameter server) that communicates with the slave
nodes, iteratively combines their results, and updates the
individual slave nodes with the combined result. This technique
gained rapid popularity and is nowadays the backbone behind
most industry-grade machine-learning implementations [26]
(although there is also a multitude of other distributed learning architectures,
each with their own advantages / disadvantages [25]).

Why federated learning?

Although distributed learning is highly effective in teaching

neural networks to accomplish complex tasks, it still depends on
as much data as possible to get the most accurate results. The data
to train popular neural networks often comes from smartphones,
which on one hand produce enormous quantities of data which
enables improved representation and generalization of machine-
learning models, but on the other hand pose a significant problem
because of three key reasons: (a) sending all kinds of data
generated by smartphones over the internet consumes a lot of
bandwidth, (b) training a neural network on data generated by
billions of smartphones is computationally extremely intensive
for a single master node, and (c) sending potentially sensitive
information across the internet to the cloud raises privacy
concerns, and is in certain cases not even allowed by several
regulations such as the US HIPAA laws [27] and Europe’s GDPR
law [28].”

These challenges motivated the development of a new type of
distributed learning called federated learning where smartphones
update the neural network with their data on-device and send
back to the server the updated model rather than their data [29].
“Federated Learning brings the code to the data, instead of the
data to the code” [30]. From this perspective, federated learning
is closely related to Mobile Edge Computing (MEC) in the sense
that computations are pushed to the edge of the network to reduce
bandwidth consumption and improve privacy.

Thanks to these advantages, federated learning is used for a wide
range of applications nowadays including next-word-prediction
on keyboards such as Gboard [31-37], “wake word detection
which enables voice assisting apps to detect wake word without
risking exposure of sensitive user data” [38], speech recognition
[39], wireless communications [40, 41], security applications
(such as malware classification [42], human activity recognition [43],
anomaly detection [44], and intrusion detection [45]), transport
applications (such as data sharing between self-driving cars [46-48],
preventing data leakage [49], traffic flow prediction [50], and the detection
of attacks in aerial vehicles [51]), object detection [52], and health
applications [53-57]

Federated learning environments have a number of notable
characteristics [30, 58]:

= Massively distributed: the total number of nodes can
easily be in the order of millions (or even billions in the case
of GBoard).

= Unbalanced: the number of training samples per node
can vary considerably.

= Non-i.i.d. data: different peers may possess different
classes distributed in different ratios.

= Unreliable: since federated learning is often applied to
smartphones, the nodes may go offline/online at any
moment and the network connection may be slow.

However, we would like to build a system that not only seeks to
properly handle the challenges imposed by the characteristics
mentioned above but is also practical to be used in real-life.
Therefore, we want to design the system around three additional
principles:

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 2

2.2. Additional design principles

Decentralized

Practically all federated learning systems employ a centralized
architecture characterized by a central trusted authority [30],
often called a parameter server, that communicates with all nodes
(generally smartphones). The machine learning process is as follows:
(1) definition of the ML model (e.g. a CNN or RNN) by the
developer in terms of hyperparameters, (2) distribution of the
model by the master to the slaves, (3) local training of the model
by each slave, (4) aggregation of all models by the master, (5)
iteratively repeating steps 2, 3, and 4 [59]. The training process
may stop when a sufficiently high accuracy is obtained or may
be trained continuously as more data becomes available to the
slaves.

Unfortunately, such a centralized architecture has several
significant drawbacks [59-61]. The parameter server is not only
a single point of failure susceptible to crashes or hacks, but it may
also become a performance bottleneck when there are too many
devices participating in the network. This problem accelerated
research that aims to remove the parameter server entirely and
train the network in a decentralized fashion [60, 62-64] where
each node both trains and aggregates incoming parameters to
learn the model [65]. Since these nodes are independent rather
than being instructed by a master node, we won’t refer to them
as slaves but just as “nodes” or “peers” in the rest of the paper.

Byzantine-resilient

Even the most efficient and stable decentralized federated
learning system is worthless for practical applications when the
model can be ruined by Byzantine nodes, where Byzantine refers
to the broadest class of faults in system components. The
malicious model can be accidental (e.g. crashes, faulty sensors,

computation errors, noisy transmission, nodes that are lagging behind, non-
i.i.d. data, etc.; all of which the probability to occur at least once grows with

the number of nodes [66]) or malicious on purpose (e.g. data poisoning
or sophisticated model poisoning attacks; more on this in Section Data
poisoning vs model poisoning attacks). This scenario, where the nodes
don’t know which of the other nodes are benign or corrupt, is the
infamous “Byzantine Generals Problem” [67]. Without a
Byzantine Fault Tolerance (BFT) mechanism, even a single
malicious node that only takes moderate values to make its
actions hard to detect can significantly degrade the performance
of the federated model [68, 69].

Unfortunately, it’s relatively easy to initiate a simple poisoning
attack where a node just sends incorrectly updated parameters on
purpose because of 3 major reasons [70]: (1) authentication
mechanisms are often not feasible since federated systems often
span across countries, (2) because the whole purpose of federated
learning is to keep the training data private, it is impossible to
audit the reliability of the training data, and (3) in real-world
situations that dataset is often (very) non-i.i.d. which makes it
challenging to distinguish between an attack and an unusual data
class.

Byzantine resilience can be divided into weak and strong
Byzantine resilience[71]. Weak f-Byzantine resilience implies

that despite the presence of f Byzantine nodes, the network will
almost surely converge to a certain value. Strong f-Byzantine
resilience implies that the network does not just converge in the
presence of f Byzantine nodes, but also converges to
approximately the right value. In this thesis we will focus on
strong Byzantine resilience since this is the only provable
solution against attackers with significant resources.

An interesting observation made by Haykin [72] is that a “mild”
Byzantine worker can actually improve the performance of the
system. This has to do with the fact that the optimization function
of a neural network is practically never convex and has many
local optima. By providing the “wrong” direction, a little bit of
noise (or a “mild” Byzantine attack in that regard) can pull the
optimization function out of a local minimum so that the network
can converge to a better global minimum [73-75]. This is also the
reason Stochastic Gradient Descent (SGD) works so well: a
randomly drawn sample is inherently more noisy (higher variance)
than the average of all samples [76] and may pull the network out
of a local minimum. However, stronger Byzantine attacks can
pull the network away from the global minimum in which case
they ruin the network’s performance.

Asynchronous

Distributed learning can happen either in synchronous rounds or
in an asynchronous manner.

Although synchronous algorithms may seem to be the natural
choice for federated learning (illustrated by the fact that the first
federated learning protocol FedAvg [30] and influential subsequent research
such as [77] were synchronous), there are a number of limitations as
summed up by [78]:

= Some devices assumed to participate in the synchronous
round may randomly drop-out, because of the volatile
nature of the end-devices.

= Devices that just joined the network and are ready/willing
to participate have to wait until the start of the next
synchronization and are thus under-utilized.

= Some devices may be significantly slower than other
devices due to more training data, less processing power,
or less bandwidth.

= When adevice is too slow to finish its iteration before the
next synchronization, it has to overwrite its local model
with the new global model and all of its progress is lost.

For this reason, numerous asynchronous approaches have been
proposed [58, 59, 78-84]. These methods either overprovision
clients and then accept the first x updates, dynamically update the
synchronization time or amount of work per node, or use
weighted averaging based on the staleness of incoming model
updates. A common reoccurrence is that all of these approaches
are dependent on a centralized parameter server, while in this
thesis we aim to harness the advantages of a completely
decentralized network. Truly decentralized protocols such as [85-
87] are in practice always asynchronous because there is no
server to synchronize training rounds, but these papers assume
that the maximum staleness of peers is bounded.

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 3

[88] aims to achieve byzantine consensus in decentralized
asynchronous networks, but they do not consider a situation
where nodes can randomly join/exit the network.

[89] presents FedProx, a modification of the FedAvg algorithm
that is supposed to tackle heterogeneity in FL by considering a
variation of computational power and other differences between
devices. However, its performance turns out to be sub-par in later
research.

Another method based on FedAvg is SAFA [78], which aims to
harness the potential efficiency gains of an asynchronous setting
while using (a) a pace steering mechanism to reduce the impact
of stale models and straggling clients, and (b) an aggregation
algorithm that exploits a cache structure to reduce
communication costs.

An approach that outperforms the former ones is presented in
[90] that performs layer-wise matching and averaging of
channels/neurons. It sends at the start of each training rounds
global model matching results to the clients and adds additional
neurons to the local models to achieve better performance.

To prevent the global model from drifting too much towards the

fastest nodes, [91] proposes a mechanism to reduces this impact.

2.3. Key contributions

Overcoming all of the challenges described above is highly non-
trivial, since distributing a computation over many peers induces
a substantial risk of local crashes, computation errors, stalled
processes, biased local datasets, but also possibly Byzantine
workers trying to significantly degrade the performance of the
system. Especially defending against Byzantine failures in a
decentralized non-i.i.d. environment is challenging, while the
literature on this topic is relatively sparse. Therefore, we will
describe in this thesis Pro-Bristle, a novel algorithm that
improves — to the best of the author’s knowledge — the current
state-of-the-art by achieving (a) decentralized, (b) Byzantine-
resilient, (c) asynchronous, and (d) non-i.i.d. federated learning.
There are several types of machine learning, including supervised
learning, unsupervised learning, and reinforcement learning. In
this paper we will focus on arguably the most popular one,
namely the supervised learning: a type of machine learning where
the model should learn the correlation between the structure of
the data and the corresponding label.

2.4. Overview of paper

First, we aim to give the reader an overview of the relatively
unknown and emerging scientific field of Federated Learning.
We will look at several types of Byzantine attacks, Byzantine-
resilient defenses, and solutions to apply these techniques in a
non-i.i.d. setting.

Then, we propose our solution called Pro-Bristle and explain how
this gradient aggregation rule (GAR) improves the state-of-the-
art in several domains.

Finally, the performance of this solution is compared with the
performance of other GARs in a large variety of settings. We
conclude by iterating gained and by giving directions for future
research.

3. Related Research

3.1. Basic idea behind federated learning

In machine learning we aim to minimize the global cost function,
risk function, loss function, or score £(68) by finding the optimal
model 6*:

arggmin x yf cD 2(fo(x),v) (1)

0" =
Where 6 is the model, D is a distribution on X x Y and £(6; i) is
the loss of model 8 on dataset instance i. This loss function is a
proxy for the actual error to be minimized, generally the negative
log likelihood of the ground truth class in the case of a
classification problem.
This optimization problem is known as risk minimization but
solving this problem is unfortunately for more complex models
intractable. Therefore, a technique called Empirical Risk
Minimization (ERM) is commonly used where take an
empirically obtained dataset M 1i.i.d. sampled from D. Then we
can obtain an estimate of the optimal model by calculating:

argmin 1

M TR (1C%) @

(x.y)EM

6, =

To minimize this function, a popular technique is called Gradient
Descent (GD) that iteratively takes the derivative of the loss
function with respect to the training samples and then moves the
hyperparameters in the direction of the gradient:

Ot+l = 9t — AV, £(6; i) 3)

However, because the dataset may be large, gradient descent can
take a long time to converge. A faster approach, used by almost
all learning algorithms today, is to use Stochastic Gradient
Descent (SGD) [92] where a subset (a minibatch) of the dataset is
selected to update the parameters in a particular iteration [93, 94].
As a result, SGD produces faster but noisier updates than GD,
but this noise is not necessarily a disadvantage because it also
helps the algorithm to escape local minima. An important
requirement for SGD to converge is that each minibatch is an
unbiased sample of the actual distribution, which is typically
achieved through uniform random sampling [95].

The most straight-forward way to apply stochastic gradient
descent in a distributed or federated setting is to use a single
master node (parameter server) that distributes and integrates the
global model and a number of slave nodes that train the model
that they obtained from the master node and send the result back
to the master node [96, 97].

In distributed machine learning the most trivial implementation
is called Bulk Synchronous Parallel [98] and in federated
learning FedAvg [30]. FedAvg simply aggregates the models
owned by the peers by coordinate-wise weighted averaging. It
was introduced by Google [43] and is still researched extensively
from both an applied and theoretical perspective [59].

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 4

[1-9]

3.2. Byzantine attacks

FedAvg, as described in the previous section, takes the average
of all models at every iteration. Obviously, when a single
Byzantine node transmits a model with extremely low or high
values, the average significantly changes, and the model become
worthless. Such an attack is easy to detect, but there are many
more sophisticated attacks that can, even with a single Byzantine
attacker, considerably reduce the model’s performance and are
much harder to detect [68, 99].

Byzantine attacks can be classified based on certain properties as
either a data poisoning or a model poisoning attack, and as either
an untargeted or a targeted attack.

Data poisoning vs model poisoning attacks

Data poisoning attacks such as [1-17, 100-103] try to degrade the
performance of the learnt model to such a degree that the model
becomes worthless by training the network with dirty samples.
They were introduced by [14] to destroy support vector machines
and later extended to many other ML algorithms including neural
networks. Without appropriate Byzantine-resilient defense
mechanisms, a malicious agent can relatively easily manipulate
the global model. The best researched type of attack is a
convergence prevention attack [18] where the attacker wants to
prevent the network from converging and reduce its accuracy up
to a point that the model might be utterly ineffective
indiscriminately for testing examples. One might think that
sending completely random numbers is an effective attack.
However, because the mean of completely random numbers is 0,
the network will still converge when the standard deviation isn’t
too extreme {Muifloz-Gonzéalez, 2019 #310} (in fact, adding
noise to the parameters is a popular method called differential
privacy that is used to improve the user’s privacy { Dwork, 2008
#307}{Abadi, 2016 #308}{Wei, 2020 #309}). A scenario where
a malicious agent injects malicious data into a benign client’s
dataset (better known as a data injection attack) is also considered data
poisoning. Another notable example of a data poisoning attack is
a label-flip attack, where the labels of two or more classes are
changed [2, 104]{Tolpegin, 2020 #311}.

While data poisoning attacks are based on the manipulation of
training data, model poisoning attacks such as [1, 2, 4, 10, 18-23,
68, 69, 105, 106] manipulate the model’s parameters directly
before sending it to other nodes. Consequently, every data
poisoning attack can be imitated with a model poisoning attack
[107], but model poisoning attacks give the attacker full control
over every single parameter and can thus be much more effective
as recent research has shown [13, 68, 99, 106]. They can even be
used to replace the entire global model with a model of the
attacker’s choice (model replacement attack), given a carefully
chosen scaling factor [2, 68]. However, there are also simple
model poisoning attack such as the Gaussian attack, where some
of the gradient vectors are replaced by random vectors sampled
from a Gaussian distribution with large variances.

Untargeted vs targeted attacks

Another way to classify Byzantine attacks as done by [107] is to
group them into untargeted and targeted attacks. Whereas
untargeted attacks such as [1-9, 68, 69, 100, 105, 106] aim to
prevent convergence and reduce the global model’s accuracy [68,
69, 105, 106], targeted attacks such as [1, 2, 4, 9-23] aim to alter
the model’s behavior in specific situations while keeping the total
accuracy as high as possible to mislead Byzantine-defense
mechanisms [2, 13]. Without proper defense mechanisms
federated learning is susceptible to both untargeted and targeted
attacks [104].

Targeted attacks are also sometimes called (semantic) backdoors,
Trojan threats, or stealth attacks, where the backdoor can target
either a single class (a label-flip attack) or a class of samples (e.g. an
almost invisible attacker-chosen pattern of pixels, i.e. a trigger) causing an
image to be classified incorrectly). A particularly effective attack
is described by Bhagoji et al. [19] who use an alternating
minimization strategy (alternating between training loss minimization
and the boosting of updates for the malicious objective). A more
sophisticated attack is proposed by Xie et al. in [21] who notes
that all backdoor attacks until then used embeddings of the same
global trigger pattern for all adversarial parties, called centralized
backdoor attacks by the authors. They then propose distributed
backdoor attacks (DBA) where the global trigger pattern is
decomposed into local patterns and which is then embedded to
different adversarial parties, thus making the attack harder to
detect, easier to bypass robust aggregation rules, and more
effective. In line with this contribution, [18] shows that targeted
model poisoning attacks can become both significantly more
effective and harder to detect when adversaries are able to
collude.

As mentioned in Section Byzantine-resilient, a little random
noise can actually improve the convergence of stochastic
gradient descent. That might lead one to think that simply
clearing away large deviations might be an effective defense
mechanism. However, [18] the authors show that this assumption
is incorrect and propose another powerful attack “capable of
defeating all state-of-the-art defenses” based on injecting values
that are just within the perturbation range (the range of values that the

Byzantine-defense mechanism allows).

Targeted attacks are hard to detect, because the accuracy of the
model may not necessarily be impacted for any of the samples
that any peer has available, but only for samples with, for
example, a specific pattern that no-one except for the attacker
knows about. More specifically, detecting backdoors in a model
is an NP-hard problem, by a reduction from 3-SAT [108], and
unlikely to be detected using gradient based techniques. [108]
explains how it is relatively easy to develop a so-called edge-case
backdoor which forces a model to consistently misclassify
seemingly easy inputs that are unlikely to be part of the regular
training data. Because these targeted model poisoning attacks
only need to modify a small part of the model [107], they look
quite similar as benign updates and require fewer adversaries

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 5

than untargeted attacks, being already effective with even a
single-shot attack under certain conditions [2].

3.3. Byzantine-resilient defenses

There are several types of Byzantine-resilient defense
mechanisms that are in the literature often segmented into
distance-based defenses (based on the calculation of some kind of
distance between potential malicious attack vectors and some other vector(s),

usually efficient but also vulnerable to elaborately designed Byzantine attacks
[18, 106]) and performance-based defenses (based on testing the
accuracy of a potentially malicious model on a small representative dataset,
which is usually computationally quite intensive and clearly dependent on the
availability of a test dataset but also usually quite effective) [109]. Another
way of segmenting the these algorithms is based on whether or
not they are centralized (require a central parameter server) Or
decentralized, or by their degree of dimensional Byzantine
resilience [109] (namely, the maximum number of tolerated Byzantine
workers).

To structure the myriad of Byzantine defense mechanisms which
we will call Gradient Aggregation Rules (GARs) from now on in
accordance with the literature, we will use more fine-grained
categories in this thesis, based on the fundamental principle that
the algorithms employ.

Algorithm Convergence Rate Statistical Learning Rate Condition on (M, b)
cM[I5 (c") by 1 1) M=2b+1

[15] ol¢ Ol'-M,-"NH"MN{N}
CTM[15 (c") b, 1 M=2b+1

[1s] Ofc O(M‘!N i)
GeoMed [16] olc) 0|: Vb } M=2b+1

\ Y MN

Krum [17] N/A N/A M=2b+3
MultiKrum [17] N/A N/A M=2b+m+2
Bulyan [18] N/A N/A M=4b+3
Zeno/Zeno++ [20], [21] o(c)+0(1) N/A M=zb+1
RSA [23] o(1)+om N/A M=b+1
signSGD [24] - N/A M=2b+1

Distance-based screening

Screening potentially malicious incoming model updates for
their distance with respect to the peer’s own trusted model is by
far the most popular to evade Byzantine attacks which should not
come as a surprise. They are often highly efficient, do not depend
on an extra dataset, special hardware features, or additional
server, and they can do an excellent job to guard against
relatively simple attacks. However, although this class of
algorithms is effective against simple attacks such as Gaussian
and label-flip attacks, they are doing a poor with regard to more
advanced attacks [110]. This is due to an implicit and somewhat
incorrect assumption made by distanced-based GARs, namely
that close distances between model parameters implies similar
performance. Additionally, gradient updates might differ
significantly in a non-i.i.d. environment between nodes which
result in large distances, leading distance-based GARs to reject
these updates as outliers. Therefore, in the other sections other
methods that are computationally much more expensive are
evaluated that might be more effective than distance-based
GARs, especially in non-i.i.d. settings.

Detecting outliers in non-distributed settings has been studied
extensively for a long time [111], generally to be able to sanitize
the data from poisoned or otherwise anomalous data [112]. In
recent years, much progress has been made in terms of improved
accuracy in high-dimensional settings [113-115]. For example,
[17] uses a clustering technique to measure the difference
between benign and malicious updates. However, these
techniques are not suited for the distributed setting on which we

are focusing.

A particularly influential algorithm is Krum[68] which selects
the model that is most similar to all other models as the new
global model. Even when the model being selected is malicious,
the performance should not degrade too much in theory because
it is close to all other models. Despite theoretical guarantees for
the convergence for certain objective functions, Krum seems to
perform quite bad in comparison to other algorithms [116] and
often converges to an ineffective model [105]. The deficient
performance stems from the ability of Byzantine workers to
introduce a substantial change in a single parameter without
significantly influencing the total distance due to the typically
high dimensionality of the parameters [105]. [18] elaborates upon
this insight and argues that, since only a single model is selected
and even the best benign worker will have a few parameters that
reside far from the mean, the GAR performs worse than other
GARs that do integrate data from multiple models into the final
model. The authors also briefly discuss Multi-Krum, which
achieves similar accuracy at a faster rate by using an average of
m local gradients obtained by Krum.

[99] presents two simple distance-based GARs, namely
Coordinate-wise Trimmed Mean (CTM) (also evaluated by [117,
118]) which simply cuts off the smallest and largest b values in
each dimension of the incoming vectors, and Coordinate-wise
Median (CM) or Marginal Median which takes the median in
every dimension. CM does not need at least 2b+1 values like
CTM, but does incur a performance hit because every dimension
must be sorted to obtain the median.

[109] also evaluated CM and compared it under con-convex
settings with two other approaches, namely the Geometric
Median and Mean around the Median. The Geometric Median is
defined as [68, 69, 109]:

v € R? 4

n
argmin .
IR Il =l @
i=1

Which can be interpreted as the point for which the square
distance to all other points in an n-dimensional space is
minimized. The Mean around the Median is defined as the mean
value of the n — g indices closest to the median, where g is an
arbitrary value. The authors find that Krum, Multi-Krum, and the
Geometric Median perform worst, the Marginal Median has
considerable variance, and the Mean around the Median performs

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 6

best. The Geometric median not only performs poorly, but also
dominates the training time in large-scale settings [119].

A variant on the Geometric Median is the (Geometric) Median of
Means [69, 120-123], which first partitions all received vectors
into k batches, then computes the mean for each batch, and finally
takes the geometric median of the k batch means. [69] extends
the techniques described in [124] with arbitrary/adversarial
outliers. They only consider strongly convex losses which they
try to remedy by using mini batches. However, their algorithm
fails even when there is only a single Byzantine node in each
mini-batch and is thus not very reliable.

Mhamdi et al. [105] try to combine the strengths of Krum and
CM in Bulyan, a GAR that iteratively applies Krum to select a
number of models and then a variant of CM to aggregate them
into a single model. More specifically, Bulyan finds for every
dimension the n parameters closest to the median and then takes
their mean value. A notable disadvantage of Bulyan is its speed
and the stringent condition that it imposes on the number of
Byzantine nodes, namely #nodes = 4 x #nodes,y antine + 3-
A year later, the authors extend Bulyan to Multi-Bulyan similarly
to the extension of Krum to Multi-Krum, but unfortunately they
don’t report on the results [71].

In order to reduce the communication necessary for the
aforementioned GARs, Bernstein et al. developed SignSGD
[125] which only transmits the sign of every dimension of the
gradient at every iteration. Since the global model is updated with
an element-wise majority vote on the signs of the received
gradients, the algorithm is in fact a median-based algorithm
which makes it also robust against certain Byzantine failure and
guarantees convergence given certain conditions imposed on the
noise [126]. However, these conditions are typically not in order
in a typical federated learning setting where the data is distributed
non-i.i.d.[127]. Sohn et al. make SignSGD more robust against
MITM-attacks, but do not address the case where nodes
themselves are malicious[128].

In contrast to SignSGD, the work done by Li et al. [129],
confusingly called RSA just like the cryptosystem, is able to
handle heterogenous datasets in a Byzantine distributed setting
and prevent incorrect gradient aggregation by letting every node
store and update a local version of the global model which are
then aggregated at the server by means of an #,-norm
regularization term which regularizes the magnitudes of

malicious messages.

An interesting distance-based method is described in [130] where
the authors construct a graph where the nodes (representing models)
are connected by a vertex only when their Euclidean distance is
small enough and subsequently solve the maximum clique model
to find the set of models that are similar to each other and
therefore probably benign. Unfortunately, the authors only
evaluate trivial label-flip attacks which make it hard to estimate

the effectiveness of the algorithm in a more challenging
environment.

All GARs described until now assume a federated setting where
a single parameter server iteratively updates the global model.
However, these algorithms do not translate well into a
decentralized setting (which is the focus of this thesis) because
decentralized GARSs require consensus between all peers which
is usually not required for distributed learning. To the best of our
knowledge, there are only three papers that attempt to achieve
Byzantine-resilient decentralized learning by adopting a truly
distance-based strategy, namely ByRDiE [131], BRIDGE [132],
and some extension of BRIDGE [133]. The CM algorithms
described before (namely the ones presented in [99, 117, 118]) are
suboptimal in vector-valued problems, because simply
minimizing the objective function along each coordinate
independent of all other coordinates yields the wrong solution
(unless all dimensions are truly independent, which is generally not the case).
This limitation is overcome in ByRdiE [131] by cyclically
updating every coordinate one by one in a decentralized manner
and subsequently applying trimmed-mean screening to obtain the
final coordinate for each dimension. Given a strictly convex loss
function, ByRDiE is proven to always converge (although not
necessarily to an optimal solution). However, although ByRDiE might
be efficient in terms of required training samples, ByRDIiE is
inefficient in terms of network communication because it only
updates one coordinate at a time and the update step depends on
the updates of other coordinates [116]. Therefore, [132] present
BRIDGE which combines CTM with SGD (Stochastic Gradient
Descent) to accomplish decentralized Byzantine-resilience with
significantly less network communication for highly dimensional
problems. The review paper [116] shows better performance for
BRIDGE than for CTM, which is highly surprising because
BRIDGE boils down to CTM in distributed environment. Upon
closer examination this happens because the authors use a 0.7
connection ratio between the nodes to evaluate BRIDGE and just
a 4 x#max _byzantine_ nodes+1=4x2+1=9; 9/
20 nodes = 0.45 connection ratio between the nodes to
evaluate CTM. [133] shows that the performance of BRIDGE
can be improved by adding a total variation (TV) norm penalty
to allow some outliers to be able to handle non-i.i.d. data. This
probably reduces the ability of the algorithm to defend against
noise attacks, but unfortunately the authors have conveniently
omitted these results from the Results section. [134] also builds
upon BRIDGE and extends the solution to non-i.i.d. settings, but
does this by re-introducing the central server that we want to omit
in a decentralized setting (more information about non-i.i.d. approaches

will be discussed in Section Error! Reference source not found.).

One of the most recent papers about the topic is [135] which
select the models with the smallest Euclidean norm to be
averaged for the updated model, but this paper evaluates its
performance by measuring the loss function, which is extremely
noisy and relatively unreliable compared to an evaluation using

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 7

a validation dataset. This makes it hard to properly estimate its
performance.

Performance screening

Although distance-based screening methods can be quick and
effective to filter out “unusual” models, they will not include
benign models when these models are quite different from the
other models (e.g. in a non-i.i.d. environment) and an attacker can let
the model drift towards a bad solution. Performance-based
solution such as [12, 112, 136-139] detect malicious models
based on a negative impact on the model’s accuracy given a test
dataset. Of these papers, we want to seriously criticize the paper
written by Zhao et al. [138] because, aside from the fact that it
contains serious grammar errors and completely incorrect
references, it also includes a major error about when label-
flipping attacks are preferred above backdoor attacks. The
authors say that label-flipping attacks are more effective in a
scenario where data samples with the same label are quite similar
while the latter is more suitable for scenarios where samples with
the same label are quite diverse. This is incorrect: you want to
use label-flipping attacks as an effective way to fool or prevent
convergence of a model without any serious byzantine-resilient
defense mechanisms while you want to use backdoor attacks to
trick the model to misclassify certain input data without letting
anyone notice that you are malicious (see Section Byzantine attacks).
The authors also assume that agents share which labels they own,
which is absurd: the whole purpose of a federated learning
environment is that the user’s data (including the labels) stays
private.

[136] presents RONI (Reject On Negative Influence, which removes
training examples with a negative impact on the accuracy of the model) and
[5] presents TRIM (which finds a subset of the training dataset given a
pre-specified size and set of hyperparameters that maximizes the accuracy
and is, according to the authors, more effective than RONI), both of which
were originally intended to filter out bad training data on a single
node. [106] converted and applied RONI and TRIM to a
federated setting and found that in that setting RONI gives
slightly better performance.

Xie et al. presented Zeno [140] (for synchronous environments) and
Zeno++ [141] (for asynchronous environments), both of which use a
centralized oracle that estimates based on a validation dataset the
true gradient and only keeps the k gradients most similar to this
estimation. The performance of both GARs is quite good
according to [116], but they depend on a centralized parameter
server and need access to a sufficiently large unbiased validation
dataset.

[142] takes a very different approach and proposes a GAR called
PDGAN that uses a Generate Adversarial Network (GAN) to
reconstruct the training data used by the peers to train the
network. Based on this data, the accuracy of the received models
can be estimated reliably. However, since the training data used
by the peers is supposed to stay private, it is actually quite
disturbing that GANs are able to reconstruct this data [19, 143],
and are, in that regard, also a “highly impactful and prioritized”
[144] attack in their own right.

Another recently presented GAR that is an important inspiration
for this thesis is Mozi [110]. It first applies a distance-based
strategy to quickly select a candidate pool of probably benign
nodes, and then screens the resulting nodes based on their
performance on a test dataset (performance screening).

Pruning

Since backdoor attacks (see Section Data poisoning vs model poisoning
attacks) are extremely challenging to detect, let alone defend
against, an entirely different class of defense mechanisms called
“pruning” defenses has been proposed that specifically aims to
prevent these backdoor attacks [145-147]. Pruning defenses use
a representative subset of the global dataset (partially violating the
FL assumption [107]) to evaluate which neurons in the neural
network are inactive. These neurons are important to find and
subsequently remove, because they enable attackers to create a
backdoor in the model [14].

Unfortunately, even when these inactive neurons are removed
from the model, more adaptive poisoning attacks are still possible
[148]. After all, the boundary between a neuron being unused or
being actively used is vague.

There are several other methods aimed at detecting backdoor
[137, 145, 146, 149-154], but these methods either assume that
there is a central server that can access the whole training dataset
and scan the samples for malicious samples (which clearly is not
possible in a federated learning setting) or access to a holdout set of

similarly distributed data (which cannot help defend against more
sophisticated model poisoning attacks as discussed in Section Byzantine

attacks).

Behavioral-based

An original way to defend against targeted poisoning by sybil
clones is presented in [104] and named FoolsGold. The authors
first observe that, when sybils collude to poison a model, their
“behavior is more similar to each other than the similarity
observed amongst the honest clients”. Based on this insight, they
present FoolsGold which detects and
contributions. However [138] shows that FoolsGold is unable to
recognize against a powerful single-client attack and can be
evaded by decomposing a distributed attack into several
orthogonal vectors.

rejects poisoned

Whereas all GARs discussed until now make it as difficult as
possible for an attacker to manipulate the system, there is also a
wide variety of GARs that take a different approach and aim to
eliminate any incentive for a node to attack the system. A trivial
approach where a parameter server simply assigns a reputation
based on a performance-based screening procedure per node (such
as [155]) doesn’t work well, because a malicious attacker can first
build up an excellent reputation, and then suddenly completely
ruin the model, empowered to do so thanks to its good reputation.
A better approach turns out to be rewarding and punishing of
participants based on their contributions, something that can be
facilitated in decentralized environments by means of a
distributed ledger [46, 156-170], usually a blockchain. This

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 8

ledger can also be used to save global model parameters to
enhance the security of the system [161, 166].

Kang et al. introduced in [171] reputation as a means to
determine the reliability of every node and subsequently
proposed a GAR based on these reliability scores[172], using
RONI to calculate reputations in i.i.d. environments and
FoolsGold to calculate reputations in non-i.i.d. environments.
For this to work, the authors (implicitly) assume an environment
where nodes have a strong identity and where there are many
different parameter servers learning different tasks that share
reputation opinions of nodes over a public blockchain.

[173] also assign a reputation to nodes that contribute well, but
their algorithm is seriously flawed: the authors use KRUM to
determine if an update is benign (which is highly unreliable [116]) and
then increase/decrease a node’s reputation when the update is
accepted/rejected respectively, implying that you can make
theoretically for every good contribution also a bad contribution
(in practice a single bad contribution can damage the model significantly
while the impact of a single good contribution is generally very limited).
Whereas all former approaches assume that the individual
workers might be Byzantine, [174] assumes a centralized setting
where the parameter server might be Byzantine. They use a
blockchain to audit all model updates from all peers so that
everyone can verify if the parameter server aggregates the model
updates correctly. The authors also train an autoencoder to
recognize outliers (i.e. Byzantine attack). This seems to work quite
well, but the autoencoder is only effective after it has been trained
properly which may take many iterations.

Another blockchain-based approach is described by [156] called
HoldOut SGD which first splits the nodes into a set of workers
that use their data to train the model for a single iteration, and a
voting committee that votes for the best proposals and stores this
information on the blockchain (similarly to [159, 175]. The voting
committee is usually selected based on Proof-of-Stake and Verifiable
Random Functions (VRFs)). The method is fully decentralized but
defends only against up to a factor of 1/3™ Byzantine workers.
The technique is hardly scalable to a high number of nodes,
because every node in the voting committee has to evaluate every
single update, and because either all voting committee nodes are
waiting until the workers are finished or vice versa a significant
amount of time is spent idling for every node.

Where the blockchain papers mentioned above are of good
quality, one has to be very careful when search for literature
about this subject. There are many papers where a blockchain is
used without properly understanding its (dis)advantages. For
example, in [46] the authors say that they want to address privacy
issues by using a blockchain, but simply using a blockchain
doesn’t magically improve the user’s privacy. The authors also
states that Directed-Acyclic-Graphs (DAGs) are a certain kind of
blockchain (which is incorrect, it are different technologies. Stating that
DAGs and blockchains are both examples of Distributed Ledger Technology
(DLT) would have been correct) and that DAGs use cumulative PoW,
which is also incorrect: newly added data DAGs usually just
reference and validate previous transactions without any PoW
involved.

A particularly good paper where the authors really make use of
the strengths of DLT is [157] where they use a Tangle to
represent the approved transactions as nodes in a Directed
Acyclic Graph (DAG). Every new transaction first verifies two
previous transactions by using one of the defense mechanisms
described in this section and includes the updated model
parameters.

There is also a considerable body of literature that uses
behavioral techniques to incentive nodes with high quality
training data to participate in the training process such as [163,
165, 168-172, 176-188] and Stackelberg game methods [176,
177, 189, 190], but since these methods are not supposed to
defend against Byzantine attacks, we leave them out of the scope
of this thesis. Additionally, the underlying assumption, namely
that agents should get some kind of incentive to participate in a
federated training process, does not seem to apply in many
popular applications, such as Gboard, Captcha, or Google Fit.

Other

There are several papers discussing innovative defense
mechanisms that are not easy to classify into a particular
category. There are a few papers that use Trusted Execution
Environments (TEEs) to achieve some form of security such as
[163, 191-194]. [191] uses secure aggregation based on the
Secure Multiparty Computation (SMC) algorithm to aggregate
the values of untrusted nodes without revealing these values,
enabling a parameter server that every party can trust. [192] also
discusses how TEEs can be used as a defense technique, later
used by [193, 194] to create a generic framework that can be used
to integrate TEEs in a federated learning environment. Weng et
al. [163] developed DeepChain that on one hand uses a
blockchain to incentivize parties to participate in the training
process, and on the other hand uses a combination of Intel
Software Guard Extensions (SGX) enclaves and homomorphic
cryptographic functions to provide a safe and privacy-preserving
environment. Their solution work well, but is computationally

also very expensive, limiting its use cases.

There are also a few solutions that model defending against
Byzantine attacks as a learning problem. [195] uses a Recurrent
Neural Network (RNN) and an auxiliary dataset to aggregate
gradients in a Byzantine-resilient manner. The idea is that a
machine learning approach can detect attacks that is hard for
other algorithms to accomplish. Unfortunately, since their RNN
is a “black box”, the authors are unable to give any theoretical
guarantees. [196] uses variational autoencoders with spectral
anomaly detection to detect malicious updates based on their
low-dimensional embeddings. By removing the noisy and
irrelevant features, the anomalous (malicious) model updates can
be distinguished from the benign updates in a low-dimensional
latent feature space.

A final type of defense mechanisms we would like to highlight
are defenses based on replicating the same training over multiple
nodes [119, 128, 197, 198]. When all nodes are benign, they will
obviously report the exact same results. While the accuracy of

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 9

these mechanisms is often illustrated with rigorous theoretical
guarantees, they generally assume a centralized server with either
a copy of the data or the ability to globally shuffle the data, which
makes the algorithm inappropriate for a decentralized federated
environment. For example, DRACO [119] lets the parameter
server send to multiple workers the same chunk of data and uses
majority voting to find the correct evaluation. Against a small
number of Byzantine attackers DRACO is very robust, but the
algorithm scales poorly to a greater number of attackers. For
example, when there are just 5 attackers, each chunk already
needs to be calculate 5x 2 + 1 = 11 times.

3.4. Non-iid.

Whereas in regular distributed learning environments, a
characteristic of a typical federated learning environment is that
the shards of the slaves are non-i.i.d. (not independent and identically
distributed) [68, 69, 99]. For example, it is possible that device A
has class X and Y, and device B has class Y and Z. As a result,
the model of device B will be quite different from the model of
device A, making it hard for device A to determine if device B’s
model is malicious or not. To make matters worse, a trivial
average of the parameter updates yields a considerably worse
model than a model that would have been trained by a single node
on class X, Y, and Z [30, 199, 200].

The challenge of building a single global model by combining
multiple local models without reducing their accuracy is closely
related to multi-task learning[201]. Multi-task Learning or
Learning (CL) is
Catastrophic

Continual concerned with preventing

Forgetting or Catastrophic Inference, a
phenomenon where the neural network completely forgets what
it has learnt before when it is taught a new task. Instead, the
network should be capable of Lifelong learning: continuously
acquire new knowledge, refine existing knowledge, and prevent
new tasks from interfering with existing knowledge.

Figure 1 is a Venn diagram created by Lesort and Lomonaco [24]
categorizing the existing CL methods into 4 partially overlapping
categories:

Architectural approaches seek to allocate additional neural

Rehearsal Generative Replay
_ Pure _—~®GR \

FIGURE 1. Venn diagram of existing CL methods [24]

O ICARL
0 EWC o GE
o Sl

O LWF

Architectural

Regularization

nodes whenever they are required or freeze specific weights[202-

205], but this requires the developer to know the number of tasks
/ samples per task a-priori and leads to scalability issues for large
neural networks.

Regularization techniques minimize the extent to which the
most important weights are overwritten by the training on a new
model. Elastic Weight Consolidation (EWC) [205], which was
based on Learning without Forgetting (LwF) [206] is an
influential regularization technique that extends the loss
function with a quadratic penalty on the change in parameters
that are important for the formerly learned tasks. The authors set
the importance of the parameters to the diagonal of the Fisher
information matrix, which works well for learning permutations
of the same task, but not for learning entirely new categories
incrementally [207]. Several improvements have been made
since such as [208-211].

Rehearsing old samples interleaved with new samples is also an
effective way to prevent catastrophic forgetting. [200] concluded
that globally sharing just 5% of the training data can result in a
30% increase in accuracy. These training samples can be selected
randomly or carefully to be as representative of the coreset as
possible. However, this approach increases the amount of
memory needed to store all samples[212-215].

Generative replay is a variant on rehearsing old samples where
a Generative Adversarial Network (GAN) is used to artificially
generate samples that have a similar distribution as the past
experiences. These samples are then intertwined with the new
empirical training samples just like in rehearsal-based strategies.

The approaches discussed until now are generic multi-task
learning techniques, but there has also been research into similar
techniques specifically for federated learning environments.

[29] is an example of a non-i.i.d. approach for federated learning,
but the authors use clusters which do not work well on high-
dimensional data (such as neural networks): the authors simply throw
away all parameters of the neural network except for the first 288
parameters in the first layer. The technique presented by [200] is
more effective and uses rehearsal: they assume that a small
amount of i.i.d. data is available that can be shared across all peer
nodes (which is generally a realistic assumption).

In specific situations where the loss function is convex and its
conjugate dual is expressible, research has shown that dual
coordinate ascent approaches such as Mocha en Cocoa can yield
superior results [200, 216-218]. Mocha [218] for instance
handles non-i.i.d. datasets while also tackling the challenge of
fault tolerance, stragglers, and communication efficiency. The
algorithm models the relation between the tasks by adding a loss
term and subsequently uses a primal-dual formulation to solve
the optimization problem. However, like many other multi-task
learning algorithms, it assumes that all peers participate in every
training round which makes these algorithms harder to apply in a
truly federated setting.

A particularly popular approach seems to be to use Elastic
Weight Consolidation ([219-223] which, as explained in this
section before, penalizes large changes of parameters important
for previously learned tasks. It is somewhat surprising that more

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 10

recent methods such as CWR(+), LWF, or AR1 have not been
investigated yet because these methods perform significantly
better in non-federated environments than EWC[224].

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021

n

4. Proposed solution: Pro-Bristle

The main contribution of this work is the development of a new
GAR named Pro-Bristle (Practical yet RObust Byzantine-Resilient
decentrallzed StochasTic federated LEarning). To explain how Pro-
Bristle works we will first recapitulate the four characteristics
and four additional design principles that we listed in Section
Introduction).

A federated learning environment is characterized by several
challenges:

= The network is massively distributed
= The nodes are unreliable
= The data is distributed non-i.i.d.

Additional design principles that we will follow for the design of
Pro-Bristle are:

= The network should be decentralized

= The algorithm should be Byzantine-resilient

= The nodes should be able to work asynchronously

= The algorithm should be communication-efficient
These challenges/design principles are overcome/integrated in
Pro-Bristle by using a mix of interrelated technologies. These
challenges and corresponding solutions are mapped in the figure

below:
Challenges Solutions
Decentralized
Unreliable Gossiping
Massively distributed Distance-based filter

Per class performance-based
filter

PSI-CA (Private-Set
Intersection Cardinality)

Byzantine-resilience

Async: received a stale model

Sigmoid weighted averaging
Non-i.i.d. data

CWR*

Deep transfer learning
Communication-efficient

Model compression

Async: received too few models Model buffer

Exploration vs exploitation

Async: received a too good model
strategy

In contrast to practically all existing works on federated learning
until now we will use gossiping to make a massively distributed
number of nodes learn together in a decentralized and scalable
way. Gossiping also makes the fact that the nodes are unreliable
irrelevant, since gossiping happens with “a random node”; if
some node happens to be offline, the other nodes will just choose
other nodes to gossip with. To provide Byzantine-resilience, we
first observe that in a perfect world (non-i.i.d., all peers working
synchronously on the same iteration, and with a balanced dataset) for every
node A, all benign models that node A receives will be reasonably
close to node A’s own model. However, Byzantine models that
the node receives can be either within or outside this distance.
This inspires us to first apply a distance-based filter to get rid of
some Byzantine attacks, and then apply a per class performance-
based filter to filter out more sophisticated Byzantine attacks.

Note that the performance-based filter depends on the availability
of private trusted data samples. This means that Pro-Bristle
completely ignores models from peers until enough private data
samples are available to test other models with the desired level
of confidence.
In contrast to the assumption until now, in real-life the world is
not perfect (as illustrated in Section Why federated learning?). For
example, in a gossiping decentralized environment, it is natural
for the data to be distributed non-i.i.d. To be effective in detecting
Byzantine attacks in a non-i.i.d. environment, we combine a set
of advanced technologies (namely PSI-CA, sigmoid weighted
averaging, CWR*, and deep transfer learning) in a new way.
This part of Pro-Bristle is complex enough to deserve its own
section (see Section “Non-i.i.d.”).
Deep transfer learning is combined with GZipped model
compression to significantly reduce the bandwidth needed to
train the model.
To account for an asynchronous environment, we will first
differentiate between three sub-problems:

= Too few peer models received to reliably perform

distance-based screening. After an iteration (which is

typically significantly faster on an asynchronously operating node
since the node does not have to synchronize with (=wait for) all

other nodes) the number of models received from other
nodes is arbitrary. When iterations are computed fast
(e.g., because the neural network is small) and models are
received only slowly (e.g., because the bandwidth is limited),
the number of received models might be small. When,
for example, only two models are received, trivial
distance-based screening procedures obviously do not
work because there are insufficient nodes to compare
the models received with. We propose to add a model
buffer to keep track of a number of recently received
models to make the distance-based screening procedure
more robust. Applying this idea in a federated setting is
not entirely new because it was also explored by Yang
et al. [83]. However, the paper of Yang et al. (a)
assumes a centralized instead of a decentralized setting,
(b) does not explicate what advantage using multiple
buffers exactly gives in their solution (which is entirely
unclear to us), and (c) is unable to update its model
directly after receiving an update, resulting in
subsequent local training on a (slightly) outdated
model.

= Stale model received. A model that is received might
be outdated and stale. In this case, its performance will
be subpar and therefore be filtered out either by the
distance-based filter or the performance-based filter.

= Extremely accurate model received that is so different
from the peer’s own model that it is filtered out by the
distance-based screening method. A model that is
received might be way better than the current model,
causing it to be filtered out by the distance-based
screening method. To solve this, we propose to use a
popular strategy that has to the best of the authors’

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 12

Peer 0

Available classes in
dataset: 1, 2, 3,4

o1 ow I T TN

Copy available
columns into tw
Tw [T

v
Train network ?{g\f

v

v [T

Copy updated
columns into cw

ow I[TTTH

New cw [

Peer 1 Peer 2
cw TN I (111
PSI-CA PeerO Peerl Peer2
Peer O - 3 0
Peer 1 3 - 1
Peer 2 0 1 -

PSI-CA overlap with
peer 0 is 3 => send
model to peer 0

v

PSI-CA overlap
with peer 0 is 0
=>don’t send
model to peer 0

X

22727222277
Distance-based filter
v Xy

Accept anyway with

probability a
v
o
st

older models

Test recall f
3 be

r every class and select the
performing classes

0.75 0.8 0.82

Integrate foreign class parameters

09 075 08 082 7*

FIGURE 2. High-level overview of Pro-Bristle

knowledge never been applied in this context before:
exploration vs exploitation. Based on an exploration
ratio a, the distance-based screening filter should
randomly accept models that are “not close enough” to
be considered otherwise. The performance-screening
filter will then notice the supposedly superior
performance of this model. We also propose that to use
weighted averaging to aggregate the models based on
their performance: when a model is received that
performs extremely well, the node should shift its

current model very significantly towards this model.

4.1. Non-i.i.d.
To properly detect Byzantine attacks in a non-i.i.d. environment,
we need to address two challenges:
= We need to be able to prevent Byzantine attacks, which
is non-trivial because the model of a peer with
completely different data will likely be recognized as
malicious by both the distance-based and performance-
based screening procedure.
= We need to be able to prevent catastrophic forgetting
when combining models trained on different classes.
Catastrophic forgetting means that when a neural
network is trained for a certain set of classes and
thereafter is trained for another set of classes, it
completely overwrites (forgets) the first set of classes.
In a federated environment this results in nodes
constantly overwriting each other, resulting in
mediocre performance.
These challenges are addressed by Pro-BRISTLE as illustrated in
Figure 2. First, we take a step back and determine if a node has
enough overlap in its data distribution with another node to
properly check the accuracy of the
Unfortunately, in a federated setting it is not possible to simply
compare the data of a pair of nodes, because this data is private.
Therefore, we use Private Set Intersection Cardinality (PSI-
CA) to check the overlap between the datasets. Only when nodes
have sufficient overlap, they will gossip with each other. We
assume that there is sufficient overlap for the whole network to

received model.

be well-connected.

Moreover, every node uses CWR* for its non-i.i.d. learning
which differentiates between short-term memory tw and long-
term memory cw. Unfortunately, CWR* requires all nodes to
agree on a frozen set of non-output layers which is impossible in
a typical federated learning scenario, because the whole purpose
of federated learning is to actually learn all layers. However,
when we make an additional assumption, we can solve this
problem: we assume that for the dataset that we want to learn,
publicly with
approximately the same features (for example, English words in

there exists another available dataset
the case of a language-based dataset, or pixel patterns in the case
of an image-based dataset). In many cases, this assumption is
realistic considering the rapidly increasing popularity of transfer
learning. Given that this assumption applies to the dataset being

learned, we can used transfer learning to learn the non-output

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 13

layers offline and then transmit these layers to all nodes where
they are frozen to be used by CWR*.

Whereas Mozi simply calculates the accuracy of every model
after applying the distance-based filter, we choose to measure the
accuracy of every model for every class of which our node has a
sufficient number of samples. Thanks to our PSI-CA result, we
know the overlap between the datasets of both peers and select
best-performing subset of classes with the same size as this
overlap. From now on, we will differentiate between this set of
selected classes and the other “foreign” classes.

Figure 3 shows on the left side an example of how three selected
classes are integrated into the peer’s own model. To prevent a
sybil attack where a large group of sybils slowly degrade the
model’s performance, an attack penalty pengiqq; is applied that
penalizes subsequent performance degradations per class. The
right side shows how the weight is calculated that is applied to
the foreign classes, i.e. the classes for which our peer cannot
(reliably) check their performance.

Finally, a simple weighted averaging is used to calculate the new
cw parameters that are used in the next iteration.

Pro-Bristle is hard to compare to existing methods. For instance,
it makes the (realistic) assumption that a large public dataset with

y

recal lmy 08 1 0

(.
Certainty_; avg(recallyner;) —2 * Std(r“’”a”other,iﬂ

recalloper; [T fll, =0
laiffl; [EITEAEA [

|my recall —recallmm,[| x10

Pefavace [T TT]

i-1

Z recally,, — recallyiper,j

=0

score;
{ |diffl3tmyrecall if recallyper; > recally,

—ldiffIrmyecalt s (14 pengeacri) elsel

certainty,, [EEIT

min(1, (recallyner,; — 0.2) * 4) v

10
weight, [TIEEIE] | weies w0

If selected: =0.14

Score;

- 4—) * certainty_;
1+e 100

10
max (0,—swrei = 4) * certainty, ;
14 e 100)

FIGURE 3. Integration of parameters

approximately the same low-level features is available, which is
used to pre-initialize the neural network.

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 14

4.2. Pseudocode

Input: initial estimate Xg, dataset
node’s collected data, dataset ptest containing a small trusted set of samples for each label,

ptrain containing an arbitrary non-validation subset of the

history buffer size)Y, exploration ratio %, max weight Q, weight decay 7, transfer network Y

NS « getSimilarPeers ()
l < initialize loss function by deep transfer from ¥
For t =0,1,2,... do

Stochastically sample Ei(t) from Ditrain
VI(x;(t), & () « compute the local gradient
N;"(t) < 211 models received from peers j € NS
N;"(t) «< The ¥ most recent models received in previous iterations
1£ |M"(t)| > 0 then

For jin (Mn vy Mr(t)) do

dij « |lxi@® - % ©)|
End for
Md(t) « (argmin ?]f\flgi\g‘ Yien dl-_j) \ V" (t)

c
N*is arandom subset where |N*| = B

N < N (W @\ M ®)

NE(@®) « NAOUNE (D)
For j €1 UNC(t) do
For c in classes(D;)
recall; .(t) « recall(l, x; (t), D)
End for

If j #1 then

c in classes (D;)

Ci (t) < argmin
]() g |C|=cardinality (]V}S (®)

)recallj’c ®

For cin G (t)
weightdif f; . (t) « |recall; .(t) — recall; . (¢)|
seqAttackPenalty; . (t) < getSeqAttackPenalty(C;(t), c, recall)
1£ recall; .(t) > recall; .(t)
score; . (t) « weightdiff; . (£)3 7 Lic
Else
score; . (t) « — weightdif f; .(£)*+7e@ lic (1 + seqAttackPenalty; . (t))
End if

certainty; .(t) < clamp(0, (recall; . — 0.2) x4,1)

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021

15

5. Implementation

5.1 Datasets

From all papers that we read as part of the literature review for
this thesis, two datasets turned out to be extremely popular in the
literature, namely the MNIST dataset [4, 11, 14, 17, 18, 20, 21,
29, 81, 89-91, 99, 100, 104-106, 108, 109, 116, 119, 125, 127,
130-135, 138, 139, 142, 143, 146, 148, 149, 151, 153, 155, 156,
159, 160, 162, 163, 173, 193-196, 199, 200, 225] and the CIFAR-
10 dataset [2, 16, 18, 21, 79, 81-84, 86, 105, 108, 109, 119, 125,
126, 128, 135, 137, 138, 140, 141, 147, 153, 156, 193, 195, 197,
199, 200, 220].

The MNIST dataset consists of 60,000 gray-scale training images
and 10,000 test images of 28x28 px that represent handwritten
digits. Even though MNIST does not represent a typical federated
learning dataset, it is very popular and, thanks to its status as one
of the most popular machine learning datasets, makes it possible
to compare our results with a large body of established literature.
To transfer-learn MNIST, we first train the network on the
EMNIST-Letters dataset which is similar to MNIST, but contains
the 26 letters of our alphabet rather than digits.

The CIFAR-10 dataset also consists of 60,000 training images
and 10,000 test images. These images are 32x32 px and RGB-
colored, showing pictures of ten distinct types of objects such as
cars, airplanes, and dogs. CIFAR-10 turns out to be significantly
more challenging to learn than MNIST, which might be useful to
properly investigate the power of new algorithms. To transfer-
learn CIFAR-10, we first train the network on CIFAR-100.
CIFAR-100 is a similar dataset as CIFAR-10, but contains 100
classes rather than 10 classes. Similarly to {Abbasi, 2018 #312}
we reduce the conceptual overlap between CIFAR-10 and
CIFAR-100, by excluding super-classes of CIFAR-100 that are
conceptually similar to CIFAR-10 classes: vehicle 1, vehicle 2,
small mammals, medium-sized mammals, and large carnivores.
We also include a realistic federated learning dataset, namely the
WISDM dataset, one of the most popular HAR (Human Activity
Recognition) datasets[226]. This dataset consists of 1,098,207
recordings of people performing one of the six included
activities. Every recording consists of at least 544 measurements
of the acceleration sensor. To transfer-learn this dataset we
pretrain the network similarly to {Saeed, 2019 #313} on the
MobiAct dataset where we again exclude overlapping classes
with the WISDM dataset.

5.2 Machine Learning part

For MNIST and CIFAR-10, we use the same CNN architectures
as used by [30] with the only difference that we use Leaky ReLu
instead of the regular ReLu as activation function for the hidden
layers, since the former one suffers less from the vanishing
gradients problem. For the output function we use the softmax
function and as loss function, we use negative loglikelihood.

MNIST
Layer Details
Convolution Kernel: <5, 5>, stride: <1, 1>

Max pooling
Convolution
Max pooling
Dense
Output

Kernel: <2, 2>, stride: <2, 2>
Kernel: <5, 5>, stride: <1, 1>
Kernel: <2, 2>, stride: <2, 2>
#nodes: 500

#nodes: 10

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021

16

CIFAR

Layer Details
Convolution Kernel: <3, 3>, stride: <1, 1>
Batch normalization
Max pooling Kernel: <2, 2>, stride: <2, 2>
Convolution Kernel: <2, 2>, stride: <1, 1>
Batch normalization
Max pooling Kernel: <3, 3>, stride: <1, 1>
Convolution Kernel: <2, 2>, stride: <1, 1>

Batch normalization
Kernel: <2, 2>, stride: <2, 2>

Kernel: <2, 2>, stride: <1, 1>

Max pooling
Convolution
Batch normalization

Max pooling Kernel: <2, 2>, stride: <2, 2>
Output #nodes: 10, dropout: 0.8
WISDM
Layer Details

1D convolution Kernel: <3>, #nodes: 64

1D max pooling Kernel: <2>, stride: <2>
1D convolution Kernel: <3>, #nodes 64
Global max pooling

Output #nodes: 10

5.3. Gradient Aggregation Rules
To properly compare our proposed solution with existing
methods, we implemented five other gradient aggregation rules
(described in detail in Section Byzantine-resilient defenses):
= FedAvg [30]. FedAvg is equivalent to simple
averaging, is researched extensively, and very often
used as baseline to compare other GARs against.
= CM (Coordinate-wise Median) [99]. CM is perhaps
the simplest, but also a very effective Byzantine-
resilient defense mechanism, as shown by [116].
= Krum [68]. Krum is an extremely popular GAR that
selects the model with the minimal local sum of
Euclidean distances.
= Bridge [132]. A very recent survey paper [116],
published in May 2020, concluded that Bridge was the
best performing GAR in decentralized settings.
= MOZI[110]. MOZI was published shortly after [116]’s
survey and uses a hybrid between distance-based and
performance-screening to achieve superior results.

5.4. Environment

We use two separate ways to test the performance of Pro-Bristle,
namely in a local simulation and in a truly decentralized
environment. In the former case, we run a single program that
iteratively trains and combines up to 250 models to simulate a
small-scale federated setting. This approach is not only relatively
fast, but also makes it easy to accurately control a variety of
settings, such as little computation power, low bandwidth, nodes
that randomly join/exit, etc. We also emulate 16 completely
independent smartphones to test if the results are comparable in
a “real” setting. Unfortunately, this limit of 16 emulators is
hardcoded in the Android emulator executable which makes it

unpractical to run more emulators simultaneously. However, 16
emulators is enough to accurately measure the performance of
different GARSs and, if the programs works well on 16 emulators,
gives us confidence that the code works as intended and scales to
a higher number of nodes given the gossiping nature of the
system and the cheap distance-based filter.

5.5 Network protocol

The nodes that use federated learning to collaboratively learn a
model communicate with each other over a network. Since we
aim to run everything completely decentralized, it is non-trivial
for nodes to find and communicate with each other in a fault-
tolerant and effective way. Therefore, we use IPv8[227, 228], a
well-established decentralized peer-to-peer (P2P) middleware
stack that is used by i.a. the popular Tribler media sharing
system[229, 230]. Furthermore, we extended IPv8 with two
significant performance improvements to make the system more
effective.

The first improvement is an extension to the Trivial File Transfer
Protocol (TFTP) that enables parallel transmission of multiple
files between the same 2 nodes. This was implemented by
assigning a unique file identifier to each file and prepending
every data packet with this identifier to keep track of all packets.
The second improvement is, to speed up the slow transmission
times of TFTP, the first Kotlin implementation of the micro
Transport Protocol (uTP). This protocol aims to mitigate the poor
latency and congestion control problems found in regular TCP
implementations, while providing reliable and ordered packet
delivery. It sends multiple packets simultaneously and
automatically slows down the transmission when the network

seems to get congested.

5.6. Task automation

Creating and starting all emulators, and installing, starting,
initializing, running, and evaluating the federated learning
program on every emulator, is infeasible to do by hand for a large
number of emulators. Therefore, we created a separate
coordinator that automates these tasks. Based on the current
operating system it executes several scripts (for example to create
new emulators that are reset to factory settings, or to increase the
local network buffers to decrease the uncontrolled/unintended
packet loss to speed up the network communication) to create and
run all tests consecutively. The nodes are instructed to perform
specific tasks as stated in a dedicated JSON file and subsequently
communicate their evaluations to the coordinator, who writes the
evaluations to a CSV file.

A separate Kotlin script was used to gather and process all
evaluations, and a Python script was used to generate based on
these evaluations the figures as shown in this paper.

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 17

Samenhang componenten benadrukken

Assumptie attacker: hij weet niet welke labels jij hebt. Geen
probleem, want die data boeit me niet, maar dat is wel

Reputatie systeem future work voor onbekende parameters

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021

18

5.7. Threat Model

To evaluate the Byzantine-resilience of the GARs discussed in
this thesis, we employ several attacks.

2 label flip attacks

As described in Section 3.2, a popular data poisoning attack is
the label-flip attack where the labels of two or more classes are
changed [2, 104]{Tolpegin, 2020 #311}. For this thesis, we
evaluate both a label-flip attack where 2 labels are flipped, and a
label-flip attack where all labels are flipped.

Noise attack

As explained in Section 3.2, simply sending random noise with a
small variance is ineffective in preventing convergence because
the mean of the noise equals 0. When the noise has a larger
variance, it may indeed prevent convergence, but also makes the
noise attack easy to detect. Therefore, we opt to center the noise
around a value just slightly different from 0, namely 0.2. This
attack will not be easily detected by the GARs evaluated in this
paper as we will see.

Krum attack {Fang, 2020 #17}

Whereas data poisoning attacks generally do not make
assumptions about the GARs employed, model poisoning attacks
often target a specific GAR. Fang et al. presents in {Fang, 2020
#17} an effective attack against Krum by iteratively sending an
attack vector that will be just accepted by Krum whilst inflicting
maximum damage to the peer’s model.

Trimmed Mean attack {Fang, 2020 #17}

In the same paper as the aforementioned Krum attack, Fang et al.
also describe a model poisoning attack against the Trimmed
Mean GAR. The attack determines for each parameter of the
model the gradient direction and then creates an attack vector that
is exactly the opposite direction, scaled per parameter depending
on the values of the other benign peers.

= Specify threat model (e.g. like in [106])

= Specify problem formulation like in [139]

= Often modeled as Poisson process [139, 231, 232]

- [233,234]
o Attacks that break existing defenses against
Byzantine adversaries

= Assume that each node is connected to at least 1 benign
node

= [139]

= Checks if incoming gradients are similar to own gradients
=> no updates possible anymore when model becomes
stale

= Many approaches assume that the number of adversarial
workers is less than half of the total number of workers,
are some exceptions that ensure convergence even in the
presence of a large number of adversaries, namely [139,
141, 155, 195, 235]

“we assume a network population with hundreds or
thousands of devices that are not typically available at the
same time to perform training; furthermore, limitations in
compute and storage resources, as well as network
bandwidth, are to be expected [21]. The training dataset
is horizontally partitioned, i.e. devices have different sets
of non-IID training and validation examples that include
a common set of features.”

“We are focused on FL and therefore assume that data is
distributed across clients and hidden, such as in an IoT
deployment with multiple devices distributed in people’s
homes. The adversary can only access and influence the
model state through the FL. API. They cannot observe the
training data of other honest clients. The adversary can
observe the global change in model state to learn the total
averaged update across all clients, but they cannot view
individual honest client updates.”

[236]

Use averaging across iterations, but critically depends on
a parameter server that keeps track of all gradient updates
of all nodes; also “proposes a fault-tolerant SGD variant
different from the robust aggregation rules. The
algorithm utilizes historical information, and achieves the
optimal sample complexity.”

“Alistarh et al. propose a Byzantine-resilient SGD
algorithm, in which at each iteration the server combines
the current and past gradient information form each
worker to compute next update, to solve convex problems
with high dimensions.”

“"Notations. We use bold lower-case letters such as m to
represent vectors, lower-case letters such as m to
represent scalars, and upper-case curlicue letters such as
S to represent sets. Aggregated vectors are denoted by a
line over vectors such as m. Byzantine vectors are
denoted by a tilde over vectors such as me . kmk denotes
the Euclidean norm of m. |S| is the cardinality of set S.
denotes element-wise multiplication =~ (Hadamard
product). All operations between vectors are element-
wise operations in this paper (except inner products of
vectors)."

113

o Idea to let nodes aggregate incoming gradient
updates per node
= [237]

e Shows that we cannot
detect Byzantine agents
based on model parameter
updates, but only based on
gradient updates.
However, this requires
sending also the first
moment/second moment
parameters across the
network every time =>
overhead

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 19

New architecture
Warm-start
o Note that this is different from federated
transfer learning, see [144]
Datasets used
[238] => used for the PSI-CA

Use!

scanned IDs (= ID,, [ID| = a) fected IC
Local public/secret key: pk,, sk
1) Encrypt and Shuffle Enc,, (1D,)
Enc,, (ID,)
2) Send to server

Enc_ (ID,)

4) Encrypt

5) decrypt .t (1D,

BF(Enc,, (ID.)

(0001100010)w (01

9) Get cardinality of intersections

o Apart from the hash functions similar to [239]
who either accidentally rediscovered SRA or
forgot to add a proper reference

o [240]

= “The server requires a minimum
number of TCNs to be queried in
order to prevent the user querying

TCNs and

identifying infected users. If users

single potentially
only have one received
contactEventTCN, the list of
encountered TCNs is padded with
randomly generated TCNs, such
that they can still query the server.
This increases the chance of a false
positive result. We introduce a limit
on the query rate, such that the app
can only send a limited number of
requests to the server at a time in
order to prevent brute force attacks.
Then users have to wait a certain
period of time until they can query
the server anew. The server’s public
key EZ/ & can additionally change
for each combined hourly uploaded
patient TCN set. This complicates a
brute force attack further, because
the attacker needs a different bloom
filter of their encountered TCNs for
each hourly dataset. Using this
approach to private set intersection
cardinality might reveal the number
of encounterered TCNs to the
server. This is not the case if we
allow the user to directly download
all TCNs of infected people and
check for matches on their phone.

Local public/s]
p———————> 3) Shuffle

6) SendH
(BF ca

7) Calculate BF(Enc,, (1D,) for each entry in 1D,
8) Check for matches with BF(: (1D)

5.8.

Using the latter method, the server
gets no information whatsover about
non-infected app users
maybe their IP-address), however
the user could identify infected
people using an attack as described
in Section 4.1. As an update to this
protocol the bloom filter can be
replaced with a cuckoo filter, which

(except

has the benefit of having lower error
probabilities for the same size. This
is also what is used in [241] .”
o Commutative encryption algorithms, e.g.
Pohlig-Hellman[242] or SRA[243]

Biggest issues encountered
Weighted averaging issues
o Problem with communicating new parameters
o Problem with communicating gradients
Local network buffers
Elastic weight consolidation
Limit of 16 emulators
TFTP insufficient
Debugging UTP
DLA4J dependency hell
o NaNs door verkeerde versie
o Verourderde URL gehardcoded
o Not maintained anymore
Multithreading issues
o Had to wuse ConcurrentHashMap for
connectionlds
Sometimes sending a message to the other peer and
receiving the subsequent response happened faster than
executing the next line of code
DLA4J gives slightly different values when adding and
then subtracting instead of subtracting and then adding
DLA4J has a bug in its memory management when it runs
multiple threads simultaneously => solved by running
them sequentially

Assumptions

assumption: nodes hebben allemaal redelijk wat
training data / geen backdoor attacks

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 20

6. Results

Tlustrate performance under non-i.i.d. conditions

= 5 graphs with 2 classes per node, 4 classes per node, ...

all classes per node

Tllustrate power of direct averaging:

much more data

Map GARs to accuracy over time of first node, when the first
node only generates very little data and other nodes generate

Tllustrate power of keeping track of last x updates:

nodes only very seldom send an update

Map GARs to accuracy over time of first node, when the other

Tllustrate power of exploration vs exploitation:

accuracy

Map GARs to accuracy over time of first node, when it joins
in quite late when the other nodes have already much better

Tllustrate power of PSI-CA + shared dataset

Map GARs to accuracy over time of first node, when the data
is utmost non-i.i.d. but still partly overlapping

() 75 attackers

() 75 attackers

6.1. Results when setting is asynchronous
Map GARs to | Map GARs to | Map GARs to
accuracy over | accuracy over | accuracy over
time time time
() dataset 1 () dataset 2 () dataset 3
() 50 nodes () 50 nodes () 50 nodes
() attack 1 () attack 1 () attack 1

() 75 attackers

Map GARs to
accuracy over
time

() dataset 1

() 10 nodes

() attack 1

() 75 attackers

Map GARs to
accuracy over
time

() dataset 1

() 50 nodes

() attack 1

() 75 attackers

Map GARs to
accuracy over
time

() dataset 1

() 250 nodes

() attack 1

() 75 attackers

Map GARs to
accuracy over
time

() dataset 1

() 50 nodes

() attack 1

() 75 attackers

Map GARs to
accuracy over
time

() dataset 1

() 50 nodes

() attack 2

() 75 attackers

Map GARs to
accuracy over
time

() dataset 1

() 50 nodes

() attack 3

() 75 attackers

Map GARs to
accuracy over
time

() dataset 1

() 50 nodes

() attack 1

() 10 attackers

Map GARs to
accuracy over
time

() dataset 1

() 50 nodes

() attack 1

() 75 attackers

Map GARs to
accuracy over
time

() dataset 1

() 50 nodes

() attack 1

() 175 attackers

6.2. Results when setting is non-i.i.d.

See table in previous section
Illustrate in mildly asynchronous / mildly non-i.i.d. setting

Difference between simulated / distributed
Impact of parameters (like exploration ratio)
Impact of communication pattern

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021

21

7.

Discussion

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021

22

8.

Conclusion

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021

23

9. References

1. Liu, Y.,Ma, S., Aafer, Y., Lee, W.-C., Zhai, J., Wang, W.,
and Zhang, X., "Trojaning Attack on Neural Networks', 2017.
2. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and

Shmatikov, V., 'How to Backdoor Federated Learning', in,
International Conference on Artificial Intelligence and Statistics,
(PMLR, 2020)

3. Biggio, B., Didaci, L., Fumera, G., and Roli, F., 'Poisoning
Attacks to Compromise Face Templates', in, 2013 International
Conference on Biometrics (ICB), (IEEE, 2013)

4. Biggio, B., Nelson, B., and Laskov, P., 'Poisoning Attacks
against Support Vector Machines', arXiv preprint arXiv:1206.6389,
2012.

5. Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru,
C., and Li, B., 'Manipulating Machine Learning: Poisoning Attacks
and Countermeasures for Regression Learning', in, 2018 IEEE
Symposium on Security and Privacy (SP), (IEEE, 2018)

6. Li, B., Wang, Y., Singh, A., and Vorobeychik, Y., 'Data
Poisoning Attacks on Factorization-Based Collaborative Filtering',
in, Advances in neural information processing systems, (2016)

7. Rubinstein, B.I., Nelson, B., Huang, L., Joseph, A.D., Lau,
S.-h., Rao, S., Taft, N., and Tygar, J.D., 'Antidote: Understanding
and Defending against Poisoning of Anomaly Detectors', in,
Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement, (2009)

8. Xiao, H., Biggio, B., Brown, G., Fumera, G., Eckert, C.,
and Roli, F., 'Is Feature Selection Secure against Training Data
Poisoning?', in, International Conference on Machine Learning,
(2015)

9. Yang, G., Gong, N.Z., and Cai, Y., 'Fake Co-Visitation
Injection Attacks to Recommender Systems', in, NDSS, (2017)
10. Chen, X., Liu, C,, Li, B., Lu, K., and Song, D., 'Targeted

Backdoor Attacks on Deep Learning Systems Using Data Poisoning',
arXiv preprint arXiv:1712.05526, 2017.

11. Koh, P.W. and Liang, P., 'Understanding Black-Box
Predictions Via Influence preprint
arXiv:1703.04730, 2017.

12. Suciu, O., Marginean, R., Kaya, Y., Daume III, H., and
Dumitras, T., "When Does Machine Learning {Fail}? Generalized
Transferability for Evasion and Poisoning Attacks', in, 27th
{USENIX} Security Symposium ({ USENIX} Security 18), (2018)
13. Bhagoji, A.N., Chakraborty, S., Mittal, P., and Calo, S.,
'Analyzing Federated Learning through an Adversarial Lens', in,
International Conference on Machine Learning, (PMLR, 2019)

14. Gu, T., Dolan-Gavitt, B., and Garg, S., 'Badnets:
Identifying Vulnerabilities in the Machine Learning Model Supply
Chain', arXiv preprint arXiv:1708.06733, 2017.

15. Nelson, B., Barreno, M., Chi, F.J., Joseph, A.D.,
Rubinstein, B.I., Saini, U., Sutton, C.A., Tygar, J.D., and Xia, K.,
'Exploiting Machine Learning to Subvert Your Spam Filter', LEET,
2008, 8, pp. 1-9.

16. Shafahi, A., Huang, W.R., Najibi, M., Suciu, O., Studer,
C., Dumitras, T., and Goldstein, T., 'Poison Frogs! Targeted Clean-
Label Poisoning Attacks on Neural Networks', in, Advances in
neural information processing systems, (2018)

17. Shen, S., Tople, S., and Saxena, P., 'Auror: Defending
against Poisoning Attacks in Collaborative Deep Learning Systems',

Functions', arXiv

in, Proceedings of the 32nd Annual Conference on Computer
Security Applications, (2016)

18. Baruch, G., Baruch, M., and Goldberg, Y., 'A Little Is
Enough: Circumventing Defenses for Distributed Learning', in,
Advances in neural information processing systems, (2019)

19. Bhagoji, A.N., Chakraborty, S., Mittal, P., and Calo, S.,
'Model Poisoning Attacks in Federated Learning', in, In Workshop
on Security in Machine Learning (SecML), collocated with the 32nd
Conference on Neural
(NeurIPS’18), (2018)

20. Sun, Z., Kairouz, P., Suresh, A.T., and McMahan, H.B.,
'Can You Really Backdoor Federated Learning?', arXiv preprint
arXiv:1911.07963, 2019.

21. Xie, C., Huang, K., Chen, P.-Y., and Li, B., Dba:
Distributed Backdoor Attacks against Federated Learning', in,
International Conference on Learning Representations, (2019)

22. Zou, M., Shi, Y., Wang, C., Li, F., Song, W., and Wang,
Y., 'Potrojan: Powerful Neural-Level Trojan Designs in Deep
Learning Models', arXiv preprint arXiv:1802.03043, 2018.

23. Koloskova, A., Stich, S.U., and Jaggi, M., 'Decentralized
Stochastic Optimization and Gossip Algorithms with Compressed
Communication', arXiv preprint arXiv:1902.00340, 2019.

24. Lesort, T., Lomonaco, V., Stoian, A., Maltoni, D., Filliat,
D., and Diaz-Rodriguez, N., 'Continual Learning for Robotics:
Definition, Framework, Learning Strategies, Opportunities and
Challenges', Information fusion, 2020, 58, pp. 52-68.

25. Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J.,
Verbelen, T., and Rellermeyer, J.S., 'A Survey on Distributed
Machine Learning', ACM Computing Surveys (CSUR), 2020, 53,
(2), pp. 1-33.

26. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,
Dean, J., Devin, M., Ghemawat, S., Irving, G., and Isard, M.,
"Tensorflow: A System for Large-Scale Machine Learning', in, 12th
{USENIX} symposium on operating systems design and
implementation ({ OSDI} 16), (2016)

217. Medicare, C.f. and Medicaid Services, The Health
Insurance Portability and Accountability Act of 1996 (Hipaa)',
(1996)

28. Voigt, P. and Von dem Bussche, A., "The Eu General Data
Protection Regulation (Gdpr)', A Practical Guide, 1st Ed., Cham:
Springer International Publishing, 2017.

29. Chen, Z., Tian, P., Liao, W., and Yu, W., 'Zero Knowledge
Clustering Based Adversarial Mitigation in Heterogeneous
Federated Learning', IEEE Transactions on Network Science and
Engineering, 2020.

30. McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B.A., 'Communication-Efficient Learning of Deep
Networks from Decentralized Data', in, Artificial Intelligence and
Statistics, (PMLR, 2017)

Information Processing Systems

31. https://ai.googleblog.com/2017/04/federated-learning-
collaborative.html, accessed Date Accessed 2017 Accessed
32. Hard, A., Rao, K., Mathews, R., Ramaswamy, S.,

Beaufays, F., Augenstein, S., Eichner, H., Kiddon, C., and Ramage,
D., 'Federated Learning for Mobile Keyboard Prediction', arXiv
preprint arXiv:1811.03604, 2018.

33. Yang, T., Andrew, G., Eichner, H., Sun, H., Li, W., Kong,
N., Ramage, D., and Beaufays, F., 'Applied Federated Learning:

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 24

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Improving Google Keyboard Query Suggestions', arXiv preprint
arXiv:1812.02903, 2018.

34. Chen, M., Mathews, R., Ouyang, T., and Beaufays, F.,
'Federated Learning of out-of-Vocabulary Words', arXiv preprint
arXiv:1903.10635, 2019.

35. Ramaswamy, S., Mathews, R., Rao, K., and Beaufays, F.,
'Federated Learning for Emoji Prediction in a Mobile Keyboard',
arXiv preprint arXiv:1906.04329, 2019.

36. Chen, M., Suresh, A.T., Mathews, R., Wong, A., Allauzen,
C., Beaufays, F., and Riley, M., 'Federated Learning of N-Gram
Language Models', arXiv preprint arXiv:1910.03432, 2019.

37. Yuan, B., Ge, S., and Xing, W., 'A Federated Learning
Framework for Healthcare Iot
arXiv:2005.05083, 2020.

38. Leroy, D., Coucke, A., Lavril, T., Gisselbrecht, T., and
Dureau, J., 'Federated Learning for Keyword Spotting', in, ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), (IEEE, 2019)

39. Sim, K.C., Beaufays, F., Benard, A., Guliani, D., Kabel,
A., Khare, N., Lucassen, T., Zadrazil, P., Zhang, H., and Johnson, L.,
'Personalization of End-to-End Speech Recognition on Mobile
Devices for Named Entities', in, 2019 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU), (IEEE, 2019)
40. Niknam, S., Dhillon, H.S., and Reed, J.H., 'Federated
Learning for Wireless Communications: Motivation, Opportunities,
and Challenges', IEEE Communications Magazine, 2020, 58, (6), pp.
46-51.

41. Chen, M., Poor, H.V., Saad, W., and Cui, S., 'Wireless
Communications for Collaborative Federated Learning in the
Internet of Things', arXiv preprint arXiv:2006.02499, 2020.

42. Lin, K.-Y. and Huang, W.-R., 'Using Federated Learning
on Malware Classification', in, 2020 22nd International Conference
on Advanced Communication Technology (ICACT), (IEEE, 2020)
43. Sozinov, K., Vlassov, V., and Girdzijauskas, S., 'Human
Activity Recognition Using Federated Learning', in, 2018 IEEE Intl
Conf on Parallel & Distributed Processing with Applications,
Ubiquitous Computing & Communications, Big Data & Cloud
Computing, Social Computing & Networking,
Computing & Communications
(ISPA/IUCC/BDCloud/Social Com/SustainCom), (IEEE, 2018)

44, Nguyen, T.D., Marchal, S., Miettinen, M., Fereidooni, H.,
Asokan, N., and Sadeghi, A.-R., 'Diot: A Federated Self-Learning
Anomaly Detection System for Iot', in, 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), (IEEE,
2019)

45. Cetin, B., Lazar, A., Kim, J., Sim, A., and Wu, K.,
'Federated Wireless Network Intrusion Detection', in, 2019 IEEE
International Conference on Big Data (Big Data), (1EEE, 2019)

46. Lu, Y., Huang, X., Zhang, K., Maharjan, S., and Zhang,
Y., 'Blockchain Empowered Asynchronous Federated Learning for
Secure Data Sharing in Internet of Vehicles', IEEE Transactions on
Vehicular Technology, 2020, 69, (4), pp. 4298-4311.

47. Samarakoon, S., Bennis, M., Saad, W., and Debbah, M.,
'Federated Learning for Ultra-Reliable Low-Latency V2v
Communications', in, 2018 IEEE Global Communications
Conference (GLOBECOM), (IEEE, 2018)

48. Gulati, A., Aujla, G.S., Chaudhary, R., Kumar, N., and
Obaidat, M.S., 'Deep Learning-Based Content Centric Data

Devices', arXiv preprint

Sustainable

Dissemination Scheme for Internet of Vehicles', in, 2018 IEEE
International Conference on Communications (ICC), (IEEE, 2018)
49. Lu, Y., Huang, X., Dai, Y., Maharjan, S., and Zhang, Y.,
'Federated Learning for Data Privacy Preservation in Vehicular
Cyber-Physical Systems', IEEE Network, 2020, 34, (3), pp. 50-56.
50. Liu, Y., James, J., Kang, J., Niyato, D., and Zhang, S.,
'Privacy-Preserving Traffic Flow Prediction: A Federated Learning
Approach', IEEE Internet of Things Journal, 2020.

51. Mowla, N.I., Tran, N.H., Doh, I, and Chae, K., 'Federated
Learning-Based Cognitive Detection of Jamming Attack in Flying
Ad-Hoc Network', IEEE Access, 2019, 8, pp. 4338-4350.

52. Liu, Y., Huang, A., Luo, Y., Huang, H., Liu, Y., Chen, Y.,
Feng, L., Chen, T., Yu, H., and Yang, Q., 'Fedvision: An Online
Visual Object Detection Platform Powered by Federated Learning',
in, AAAL (2020)

53. Schneble, W. and Thamilarasu, G., 'Attack Detection
Using Federated Learning in Medical Cyber-Physical Systems'.
54. Lu, S., Zhang, Y., and Wang, Y., 'Decentralized Federated

Learning for Electronic Health Records', in, 2020 54th Annual
Conference on Information Sciences and Systems (CISS), (IEEE,
2020)

55. Brisimi, T.S., Chen, R., Mela, T., Olshevsky, A,
Paschalidis, 1.C., and Shi, W., 'Federated Learning of Predictive
Models from Federated Electronic Health Records', International
journal of medical informatics, 2018, 112, pp. 59-67.

56. Xu, J. and Wang, F., 'Federated Learning for Healthcare
Informatics', arXiv preprint arXiv:1911.06270, 2019.
57. Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H.,

Albarqouni, S., Bakas, S., Galtier, M.N., Landman, B., and Maier-
Hein, K., 'The Future of Digital Health with Federated Learning',
arXiv preprint arXiv:2003.08119, 2020.

58. Konecny, J., McMahan, H.B., Ramage, D., and Richtarik,
P., 'Federated Optimization: Distributed Machine Learning for on-
Device Intelligence', arXiv preprint arXiv:1610.02527, 2016.

59. Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D.,
Ingerman, A., Ivanov, V., Kiddon, C., Kone¢ny, J., Mazzocchi, S.,
and McMahan, H.B., 'Towards Federated Learning at Scale: System
Design', arXiv preprint arXiv:1902.01046, 2019.

60. Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W.,
and Liu, J., 'Can Decentralized Algorithms Outperform Centralized
Algorithms? A Case Study for Decentralized Parallel Stochastic
Gradient Descent', in, Advances in neural information processing
systems, (2017)

6l. Xie, X., Ma, L., Wang, H., Li, Y., Liu, Y., and Li, X.,
'Diffchaser: Detecting Disagreements for Deep Neural Networks', in,
IJCALI (2019)

62. Dobbe, R., Fridovich-Keil, D., and Tomlin, C., 'Fully
Decentralized Policies for Multi-Agent Systems: An Information
Theoretic Approach', in, Advances in neural information processing
systems, (2017)

63. Tang, H., Gan, S., Zhang, C., Zhang, T., and Liu, J.,
'Communication Compression for Decentralized Training', in,
Advances in neural information processing systems, (2018)

64. Lalitha, A., Wang, X., Kilinc, O., Lu, Y., Javidi, T., and
Koushanfar, F., 'Decentralized Bayesian Learning over Graphs',
arXiv preprint arXiv:1905.10466, 2019.

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 25

65. Nedic, A. and Ozdaglar, A., 'Distributed Subgradient
Methods for Multi-Agent Optimization', IEEE Transactions on
Automatic Control, 2009, 54, (1), pp. 48-61.

66. Harinath, D., Satyanarayana, P., and Murthy, M., 'A
Review on Security Issues and Attacks in Distributed Systems',
Journal of Advances in Information Technology, 2017, 8, (1).

67. Lamport, L., Shostak, R., and Pease, M., The Byzantine
Generals Problem', Concurrency: The Works of Leslie Lamport,
(2019)

68. Blanchard, P., Guerraoui, R., and Stainer, J., 'Machine

Learning with Adversaries: Byzantine Tolerant Gradient Descent',
in, Advances in neural information processing systems, (2017)

69. Chen, Y., Su, L., and Xu, J., 'Distributed Statistical
Machine Learning in Adversarial Settings: Byzantine Gradient
Descent', Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 2017, 1, (2), pp. 1-25.

70. Zhang, Q., Cheng, L., and Boutaba, R., 'Algorithms and
Architectures for Parallel Processing', J. Int. Serv. Appl, 2010, 1, (1),
pp. 7-18.

71. El-Mhamdi, E.-M. and Guerraoui, R., 'Fast and Secure

Distributed Learning
arXiv:1905.04374, 2019.

in High Dimension', arXiv preprint

72. Haykin, S., Neural Networks and Learning Machines, 3/E,
(Pearson Education India, 2010)
73. Neelakantan, A., Vilnis, L., Le, Q.V., Sutskever, 1., Kaiser,

L., Kurach, K., and Martens, J., 'Adding Gradient Noise Improves
Learning for Very Deep Networks', preprint
arXiv:1511.06807, 2015.

74. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M.,
and Tang, P.T.P., 'On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima', arXiv preprint
arXiv:1609.04836, 2016.

75. Kleinberg, R., Li, Y., and Yuan, Y., 'An Alternative View:

arXiv

When Does Sgd Escape Local Minima?', arXiv preprint
arXiv:1802.06175, 2018.

76. Bottou, L., 'Online Learning and Stochastic
Approximations', On-line learning in neural networks, 1998, 17, (9),
p. 142.

71. Chen, J., Pan, X., Monga, R., Bengio, S., and Jozefowicz,

R., 'Revisiting Distributed Synchronous Sgd', arXiv preprint
arXiv:1604.00981, 2016.

78. Wu, W, He, L., Lin, W., Mao, R., Maple, C., and Jarvis,
S.A., 'Safa: A Semi-Asynchronous Protocol for Fast Federated
Learning with Low Overhead', IEEE Transactions on Computers,
2020.

79. Xie, C., Koyejo, S., and Gupta, I., 'Asynchronous
Federated Optimization', arXiv preprint arXiv:1903.03934, 2019.
80. Chen, Y., Ning, Y., and Rangwala, H., 'Asynchronous

Online Federated Learning for Edge Devices', arXiv preprint
arXiv:1911.02134, 2019.

81. Sprague, M.R., Jalalirad, A., Scavuzzo, M., Capota, C.,
Neun, M., Do, L., and Kopp, M., 'Asynchronous Federated Learning
for Geospatial Applications', in, Joint European Conference on
Machine Learning and Knowledge Discovery in Databases,
(Springer, 2018)

82. Mohammad, U. and Sorour, S., 'Adaptive Task Allocation
for Asynchronous Federated Mobile Edge Learning', arXiv preprint
arXiv:1905.01656, 2019.

83. Yang, Y.-R. and Li, W.-J., 'Basgd: Buffered Asynchronous
Sgd for Byzantine Learning', arXiv preprint arXiv:2003.00937,
2020.

84. Chen, M., Mao, B., and Ma, T., 'Efficient and Robust
Asynchronous Federated Learning with Stragglers', in, Submitted to
International Conference on Learning Representations, (2019)

85. Roy, A.G., Siddiqui, S., Polster]l, S., Navab, N., and
Wachinger, C., 'Braintorrent: A Peer-to-Peer Environment for
Decentralized Federated arXiv
arXiv:1905.06731, 2019.

86. Hu, C., Jiang, J., and Wang, Z., 'Decentralized Federated
Learning: A Segmented Gossip Approach', arXiv preprint
arXiv:1908.07782, 2019.

87. Hegedds, 1., Danner, G., and Jelasity, M., 'Gossip Learning
as a Decentralized Alternative to Federated Learning', in, IFIP
International Conference on Distributed Applications and
Interoperable Systems, (Springer, 2019)

88. Haseltalab, A. and Akar, M., 'Approximate Byzantine

Learning', preprint

Consensus in Faulty Asynchronous Networks', in, 2015 American
Control Conference (ACC), (IEEE, 2015)

89. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V., Federated Optimization in Heterogeneous Networks',
arXiv preprint arXiv:1812.06127, 2018.

90. Nilsson, A., Smith, S., Ulm, G., Gustavsson, E., and
Jirstrand, M., 'A Performance Evaluation of Federated Learning
Algorithms', in, Proceedings of the Second Workshop on Distributed
Infrastructures for Deep Learning, (2018)

91. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S.J., Stich,
S.U., and Suresh, A.T., 'Scaffold: Stochastic Controlled Averaging
for on-Device Federated Learning', arXiv preprint
arXiv:1910.06378, 2019.

92. Robbins, H. and Monro, S., 'A Stochastic Approximation
Method', The annals of mathematical statistics, 1951, pp. 400-407.
93. Kingma, D.P. and Ba, J., '"Adam: A Method for Stochastic
Optimization', arXiv preprint arXiv:1412.6980, 2014.

94. Mukkamala, M.C. and Hein, M., 'Variants of Rmsprop and

Adagrad with Logarithmic Regret Bounds',
arXiv:1706.05507, 2017.

95. Damaskinos, G., El Mhamdi, E.M., Guerraoui, R.,
Guirguis, A.H.A., and Rouault, S.L.A., 'Aggregathor: Byzantine
Machine Learning Via Robust Gradient Aggregation', in, The
Conference on Systems and Machine Learning (SysML), 2019,
(2019)

96. Zhang, S., Choromanska, A.E., and LeCun, Y., 'Deep
Learning with Elastic Averaging Sgd', in, Advances in neural
information processing systems, (2015)

97. Li, M., Andersen, D.G., Park, J.W., Smola, A.J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E.J., and Su, B.-Y., 'Scaling
Distributed Machine Learning with the Parameter Server', in, 11th
{USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 14), (2014)

98. Xing, E.P., Ho, Q., Xie, P., and Wei, D., 'Strategies and
Principles of Distributed Machine Learning on Big Data',
Engineering, 2016, 2, (2), pp. 179-195.

99. Yin, D., Chen, Y., Ramchandran, K., and Bartlett, P.,
'Byzantine-Robust Distributed Learning: Towards Optimal
Statistical Rates', arXiv preprint arXiv:1803.01498, 2018.

arXiv preprint

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 26

100. Muiioz-Gonzélez, L., Biggio, B., Demontis, A., Paudice,
A., Wongrassamee, V., Lupu, E.C., and Roli, F., "Towards Poisoning
of Deep Learning Algorithms with Back-Gradient Optimization', in,
Proceedings of the 10th ACM Workshop on Artificial Intelligence
and Security, (2017)

101. Wang, B. and Gong, N.Z., 'Attacking Graph-Based
Classification Via Manipulating the Graph Structure', in,
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, (2019)

102. Mei, S. and Zhu, X., 'Using Machine Teaching to Identify
Optimal Training-Set Attacks on Machine Learners', in, AAAIL
(2015)

103. Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati,
A., Xiao, C., Prakash, A., Kohno, T., and Song, D., 'Robust Physical-
World Attacks on Deep Learning Visual Classification', in,
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, (2018)

104. Fung, C., Yoon, C.J., and Beschastnikh, I., 'Mitigating
Sybils in Federated Learning Poisoning', arXiv preprint
arXiv:1808.04866, 2018.

105. Mhamdi, E'M.E., Guerraoui, R., and Rouault, S., 'The
Hidden Vulnerability of Distributed Learning in Byzantium', arXiv
preprint arXiv:1802.07927, 2018.

106. Fang, M., Cao, X., Jia, J., and Gong, N., 'Local Model
Poisoning Attacks to Byzantine-Robust Federated Learning', in, 29th
{USENIX} Security Symposium ({ USENIX} Security 20), (2020)
107. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A.,
Bennis, M., Bhagoji, A.N., Bonawitz, K., Charles, Z., Cormode, G.,
and Cummings, R., 'Advances and Open Problems in Federated
Learning', arXiv preprint arXiv:1912.04977, 2019.

108. Wang, H., Sreenivasan, K., Rajput, S., Vishwakarma, H.,
Agarwal, S., Sohn, J.-y., Lee, K., and Papailiopoulos, D., 'Attack of
the Tails: Yes, You Really Can Backdoor Federated Learning', arXiv
preprint arXiv:2007.05084, 2020.

109. Xie, C., Koyejo, O., and Gupta, 1., 'Generalized Byzantine-
Tolerant Sgd', arXiv preprint arXiv:1802.10116, 2018.

110. Guo, S., Zhang, T., Xie, X., Ma, L., Xiang, T., and Liu, Y.,
'"Towards Byzantine-Resilient Learning in Decentralized Systems',
arXiv preprint arXiv:2002.08569, 2020.

111. Huber, P.J., Robust Statistics, (John Wiley & Sons, 2004)
112. Cretu, G.F., Stavrou, A., Locasto, M.E., Stolfo, S.J., and
Keromytis, A.D., 'Casting out Demons: Sanitizing Training Data for
Anomaly Sensors', in, 2008 IEEE Symposium on Security and
Privacy (sp 2008), (IEEE, 2008)

113. Bhatia, K., Jain, P., and Kar, P., 'Robust Regression Via
Hard Thresholding', in, Advances in neural information processing
systems, (2015)

114. Diakonikolas, I., Kamath, G., Kane, D., Li, J., Moitra, A.,
and Stewart, A., 'Robust Estimators in High-Dimensions without the
Computational Intractability', SIAM Journal on Computing, 2019,
48, (2), pp. 742-864.

115. Lai, K.A., Rao, A.B., and Vempala, S., 'Agnostic
Estimation of Mean and Covariance', in, 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), (IEEE,
2016)

116. Yang, Z., Gang, A., and Bajwa, W.U., 'Adversary-
Resilient Inference and Machine Learning: From Distributed to
Decentralized', stat, 2019, 1050, p. 23.

117. Su, L. and Vaidya, N.H., 'Fault-Tolerant Distributed
Optimization (Part Iv): Constrained Optimization with Arbitrary
Directed Networks', arXiv preprint arXiv:1511.01821, 2015.

118. Sundaram, S. and Gharesifard, B., 'Distributed
Optimization under Adversarial Nodes', IEEE Transactions on
Automatic Control, 2018, 64, (3), pp. 1063-1076.

119. Chen, L., Wang, H., Charles, Z., and Papailiopoulos, D.,
'Draco: Byzantine-Resilient Distributed Training Via Redundant
Gradients', arXiv preprint arXiv:1803.09877, 2018.

120. Alon, N., Matias, Y., and Szegedy, M., 'The Space
Complexity of Approximating the Frequency Moments', Journal of
Computer and system sciences, 1999, 58, (1), pp. 137-147.

121. Jerrum, M.R., Valiant, L.G., and Vazirani, V.V., 'Random
Generation of Combinatorial
Distribution', Theoretical computer science, 1986, 43, pp. 169-188.
122. Lerasle, M. and Oliveira, R.I., 'Robust Empirical Mean
Estimators', arXiv preprint arXiv:1112.3914, 2011.

Structures from a Uniform

123. Minsker, S., 'Geometric Median and Robust Estimation in
Banach Spaces', Bernoulli, 2015, 21, (4), pp. 2308-2335.
124. Minsker, S., 'Distributed Statistical Estimation and Rates

of Convergence in Normal Approximation', Electronic Journal of
Statistics, 2019, 13, (2), pp. 5213-5252.

125. Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and
Anandkumar, A., 'Signsgd: Compressed Optimisation for Non-
Convex Problems', arXiv preprint arXiv:1802.04434, 2018.

126. Bernstein, J., Zhao, J., Azizzadenesheli, K., and
Anandkumar, A., 'Signsgd with Majority Vote Is Communication
Efficient and Fault Tolerant', arXiv preprint arXiv:1810.05291,
2018.

127. Chen, X., Chen, T., Sun, H., Wu, Z.S., and Hong, M.,
'Distributed Training with Heterogeneous Data: Bridging Median-
and Mean-Based Algorithms', arXiv preprint arXiv:1906.01736,
2019.

128. Sohn, J.-y., Han, D.-J., Choi, B., and Moon, J., 'Election
Coding for Distributed Learning: Protecting Signsgd against
Byzantine Attacks', arXiv preprint arXiv:1910.06093, 2019.

129. Li, L., Xu, W., Chen, T., Giannakis, G.B., and Ling, Q.,
'Rsa: Byzantine-Robust Stochastic Aggregation Methods for
Distributed Learning from Heterogeneous Datasets', in, Proceedings
of the AAAI Conference on Artificial Intelligence, (2019)

130. Cao, D., Chang, S., Lin, Z., Liu, G., and Sun, D.,
'Understanding Distributed Poisoning Attack in Federated Learning',
in, 2019 IEEE 25th International Conference on Parallel and
Distributed Systems (ICPADS), (IEEE, 2019)

131. Yang, Z. and Bajwa, W.U., '‘Byrdie: Byzantine-Resilient
Distributed Coordinate Descent for Decentralized Learning', IEEE
Transactions on Signal and Information Processing over Networks,
2019, 5, (4), pp. 611-627.

132. Yang, Z. and Bajwa, W.U., 'Bridge: Byzantine-Resilient
Decentralized Gradient Descent', arXiv preprint arXiv:1908.08098,
2019.

133. Peng, J. and Ling, Q., 'Byzantine-Robust Decentralized
Stochastic Optimization', in, ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
(IEEE, 2020)

134. He, L., Karimireddy, S.P., and Jaggi, M., 'Byzantine-
Robust Learning on Heterogeneous Datasets Via Resampling', arXiv
preprint arXiv:2006.09365, 2020.

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 27

135. Gupta, N., Liu, S., and Vaidya, N.H., 'Byzantine Fault-
Tolerant Distributed Machine Learning Using Stochastic Gradient
Descent (Sgd) and Norm-Based Comparative Gradient Elimination
(Cge)', arXiv preprint arXiv:2008.04699, 2020.

136. Barreno, M., Nelson, B., Joseph, A.D., and Tygar, J.D.,
'"The Security of Machine Learning', Machine Learning, 2010, 81,
(2), pp. 121-148.

137. Tran, B., Li, J., and Madry, A., 'Spectral Signatures in
Backdoor Attacks', in, Advances in neural information processing
systems, (2018)

138. Zhao, L., Hu, S., Wang, Q., Jiang, J., Chao, S., Luo, X.,
and Hu, P., 'Shielding Collaborative Learning: Mitigating Poisoning
Attacks through Client-Side Detection', IEEE Transactions on
Dependable and Secure Computing, 2020.

139. Jin, R., He, X., and Dai, H., 'Distributed Byzantine
Tolerant Stochastic Gradient Descent in the Era of Big Data', in, ICC
2019-2019 IEEE International Conference on Communications
(ICC), (IEEE, 2019)

140. Xie, C., Koyejo, S., and Gupta, I., Zeno: Distributed
Stochastic Gradient Descent with Suspicion-Based Fault-Tolerance',
in, International Conference on Machine Learning, (PMLR, 2019)
141. Xie, C., Koyejo, S., and Gupta, 1., Zeno++: Robust Fully
Asynchronous Sgd', arXiv preprint arXiv:1903.07020, 2019.

142. Zhao, Y., Chen, J., Zhang, J., Wu, D., Teng, J., and Yu, S.,
'Pdgan: A Novel Poisoning Defense Method in Federated Learning
Using Generative Network', 1in,
Conference on Algorithms and Architectures for Parallel Processing,
(Springer, 2019)

143. Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., and
Qi, H., 'Beyond Inferring Class Representatives: User-Level Privacy
Leakage from Federated Learning', in, IEEE INFOCOM 2019-1EEE
Conference on Computer Communications, (IEEE, 2019)

144. Mothukuri, V., Parizi, R.M., Pouriyeh, S., Huang, Y.,
Dehghantanha, A., and Srivastava, G., 'A Survey on Security and
Privacy of Federated Learning', Future Generation Computer
Systems, 2020.

145. Liu, K., Dolan-Gavitt, B., and Garg, S., 'Fine-Pruning:
Defending against Backdooring Attacks on Deep Neural Networks',
in, International Symposium on Research in Attacks, Intrusions, and
Defenses, (Springer, 2018)

146. Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng,
H., and Zhao, B.Y., 'Neural Cleanse: Identifying and Mitigating
Backdoor Attacks in Neural Networks', in, 2019 IEEE Symposium
on Security and Privacy (SP), (IEEE, 2019)

147. Jiang, Y., Wang, S., Ko, B.J., Lee, W.-H., and Tassiulas,
L., 'Model Pruning Enables Efficient Federated Learning on Edge
Devices', arXiv preprint arXiv:1909.12326, 2019.

148. Koh, P.W., Steinhardt, J., and Liang, P., 'Stronger Data
Poisoning Attacks Break Data Sanitization Defenses', arXiv preprint
arXiv:1811.00741, 2018.

149. Steinhardt, J., Koh, P.W.W., and Liang, P.S., 'Certified
Defenses for Data Poisoning Attacks', in, Advances in neural
information processing systems, (2017)

150. Qiao, M. and Valiant, G., 'Learning Discrete Distributions
from Untrusted Batches', arXiv preprint arXiv:1711.08113, 2017.
151. Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H.,
Edwards, B., Lee, T., Molloy, I., and Srivastava, B., 'Detecting

Adversarial International

Backdoor Attacks on Deep Neural Networks by Activation
Clustering', arXiv preprint arXiv:1811.03728, 2018.

152. Chou, E., Tramer, F., Pellegrino, G., and Boneh, D.,
'Sentinet: Detecting Physical Attacks against Deep Learning
Systems', arXiv preprint arXiv:1812.00292, 2018.

153. Shen, Y. and Sanghavi, S., 'Learning with Bad Training
Data Via Iterative Trimmed Loss Minimization', in, International
Conference on Machine Learning, (PMLR, 2019)

154. Diakonikolas, I., Kamath, G., Kane, D., Li, J., Steinhardt,
J., and Stewart, A., 'Sever: A Robust Meta-Algorithm for Stochastic
Optimization', in, International Conference on Machine Learning,
(2019)

155. Regatti, J. and Gupta, A., 'Befriending the Byzantines
through Reputation Scores', arXiv preprint arXiv:2006.13421, 2020.
156. Azulay, S., Raz, L., Globerson, A., Koren, T., and Afek,
Y., 'Holdout Sgd: Byzantine Tolerant Federated Learning', arXiv
preprint arXiv:2008.04612, 2020.

157. Schmid, R., Pfitzner, B., Beilharz, J., Arnrich, B., and
Polze, A., 'Tangle Ledger for Decentralized Learning', in, 2020 IEEE
International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), (IEEE, 2020)

158. Kim, H., Kim, S.-H., Hwang, J.Y., and Seo, C., 'Efficient
Privacy-Preserving Machine Learning for Blockchain Network',
IEEE Access, 2019, 7, pp. 136481-136495.

159. Shayan, M., Fung, C., Yoon, CJ., and Beschastnikh, I.,
'Biscotti: A Ledger for Private and Secure Peer-to-Peer Machine
Learning', arXiv preprint arXiv:1811.09904, 2018.

160. Chen, X., Ii, 1., Luo, C., Liao, W., and Li, P., "When
Machine Learning Meets Blockchain: A Decentralized, Privacy-
Preserving and Secure Design', in, 2018 IEEE International
Conference on Big Data (Big Data), (IEEE, 2018)

161. Kim, H., Park, J., Bennis, M., and Kim, S.-L.,
'Blockchained on-Device Federated Learning', IEEE
Communications Letters, 2019, 24, (6), pp. 1279-1283.

162. Kim, Y.J. and Hong, C.S., 'Blockchain-Based Node-
Aware Dynamic Weighting Methods for Improving Federated
Learning Performance', in, 2019 20th Asia-Pacific Network
Operations and Management Symposium (APNOMS), (IEEE, 2019)
163. Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y., and Luo,
W., 'Deepchain: Auditable and Privacy-Preserving Deep Learning
with Blockchain-Based IEEE Transactions on
Dependable and Secure Computing, 2019.

164. Zhou, S., Huang, H., Chen, W., Zhou, P., Zheng, Z., and
Guo, S., 'Pirate: A Blockchain-Based Secure Framework of
Distributed Machine Learning in 5g Networks', IEEE Network,
2020.

165. Toyoda, K. and Zhang, A.N., 'Mechanism Design for an
Incentive-Aware Blockchain-Enabled Federated Learning Platform’,
in, 2019 IEEE International Conference on Big Data (Big Data),
(IEEE, 2019)

166. Majeed, U. and Hong, C.S., 'Flchain: Federated Learning
Via Mec-Enabled Blockchain Network', in, 2019 20th Asia-Pacific
Network Operations and Management Symposium (APNOMS),
(IEEE, 2019)

167. Salah, K., Rehman, M.H.U., Nizamuddin, N., and Al-
Fuqaha, A., 'Blockchain for Ai: Review and Open Research
Challenges', IEEE Access, 2019, 7, pp. 10127-10149.

Incentive',

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 28

168. Bao, X., Su, C., Xiong, Y., Huang, W., and Hu, Y.,
'Flchain: A Blockchain for Auditable Federated Learning with Trust
and Incentive', in, 2019 5th International Conference on Big Data
Computing and Communications (BIGCOM), (IEEE, 2019)

169. TOYODA, K., MATHIOPOULOS, P.T., and ZHANG,
ANN., 'Novel Blockchain-Based Federated
Learning Platform with Mechanism Design'.

170. Zhao, Y., Zhao, J., Jiang, L., Tan, R., and Niyato, D.,
'Mobile Edge Computing, Blockchain and Reputation-Based
Crowdsourcing Iot Federated Learning: A Secure, Decentralized and
Privacy-Preserving System', arXiv preprint arXiv:1906.10893, 2019.
171. Kang, J., Xiong, Z., Niyato, D., Yu, H., Liang, Y.-C., and
Kim, D.I., 'Incentive Design for Efficient Federated Learning in
Mobile Networks: A Contract Theory Approach', in, 2019 IEEE
VTS Asia Pacific Wireless Communications Symposium (APWCS),
(IEEE, 2019)

172. Kang, J., Xiong, Z., Niyato, D., Xie, S., and Zhang, J.,
'Incentive Mechanism for Reliable Federated Learning: A Joint

Incentive-Aware

Optimization Approach to Combining Reputation and Contract
Theory', IEEE Internet of Things Journal, 2019, 6, (6), pp. 10700-
10714.

173. Zhao, Y., Zhao, J., Jiang, L., Tan, R., Niyato, D., Li, Z.,
Lyu, L., and Liu, Y., 'Privacy-Preserving Blockchain-Based
Federated Learning for Iot Devices', IEEE Internet of Things
Journal, 2020.

174. Preuveneers, D., Rimmer, V., Tsingenopoulos, I,
Spooren, J., Joosen, W., and Ilie-Zudor, E., 'Chained Anomaly
Detection Models for Federated Learning: An Intrusion Detection
Case Study', Applied Sciences, 2018, 8, (12), p. 2663.

175. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., and
Zeldovich, N., 'Algorand: Scaling Byzantine Agreements for
Cryptocurrencies', in, Proceedings of the 26th Symposium on
Operating Systems Principles, (2017)

176. Zhan, Y., Li, P., Qu, Z., Zeng, D., and Guo, S., 'A
Learning-Based Incentive Mechanism for Federated Learning', IEEE
Internet of Things Journal, 2020.

1717. Khan, L.U., Tran, N.H., Pandey, S.R., Saad, W., Han, Z.,
Nguyen, M.N., and Hong, C.S., 'Federated Learning for Edge
Networks: Resource Optimization and Incentive Mechanism', arXiv
preprint arXiv:1911.05642, 2019.

178. Yu, H., Liu, Z., Liu, Y., Chen, T., Cong, M., Weng, X.,
Niyato, D., and Yang, Q., 'A Fairness-Aware Incentive Scheme for
Federated Learning', in, Proceedings of the AAAI/ACM Conference
on Al, Ethics, and Society, (2020)

179. Hu, R. and Gong, Y., 'Trading Data for Learning: Incentive
Mechanism for on-Device Federated Learning', arXiv preprint
arXiv:2009.05604, 2020.

180. Zeng, R., Zhang, S., Wang, J., and Chu, X., 'Fmore: An
Incentive Scheme of Multi-Dimensional Auction for Federated
Learning in Mec', arXiv preprint arXiv:2002.09699, 2020.

181. Yu, H., Liu, Z., Liu, Y., Chen, T., Cong, M., Weng, X.,
Niyato, D., and Yang, Q., 'A Sustainable Incentive Scheme for
Federated Learning', IEEE Intelligent Systems, 2020.

182. Le, T.H.T., Tran, N.H., Tun, Y.K., Nguyen, M.N., Pandey,
S.R., Han, Z., and Hong, C.S., 'An Incentive Mechanism for
Federated Learning in Wireless Cellular Network: An Auction
Approach', arXiv preprint arXiv:2009.10269, 2020.

183. Cong, M., Yu, H., Weng, X., Qu,J., Liu, Y., and Yiu, S.M.,
'A Vcg-Based Fair Incentive Mechanism for Federated Learning’,
arXiv preprint arXiv:2008.06680, 2020.

184. Ding, N., Fang, Z., and Huang, J., 'Incentive Mechanism
Design for Federated Learning with Multi-Dimensional Private
Information’, in, 2020 18th International Symposium on Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOPT), (IEEE, 2020)

185. Lim, W.Y.B., Xiong, Z., Kang, J., Niyato, D., Zhang, Y.,
Leung, C., and Miao, C., 'An Incentive Scheme for Federated
Learning in the Sky', in, Proceedings of the 2nd ACM MobiCom
Workshop on Drone Assisted Wireless Communications for 5G and
Beyond, (2020)

186. Lim, W.Y.B., Xiong, Z., Miao, C., Niyato, D., Yang, Q.,
Leung, C., and Poor, H.V., 'Hierarchical Incentive Mechanism
Design for Federated Machine Learning in Mobile Networks', IEEE
Internet of Things Journal, 2020.

187. Ng, K.L., Chen, Z., Zelei Liu, H.Y., Liu, Y., and Yang, Q.,
'A Multi-Player Game for Studying Federated Learning Incentive
Schemes'.

188. Pandey, S.R., Suhail, S., Tun, Y.K., Alsenwi, M., and
Hong, C.S., 'An Incentive Design to Perform Federated Learning'.
189. Feng, S., Niyato, D., Wang, P., Kim, D.I., and Liang, Y.-
C., Joint Service Pricing and Cooperative Relay Communication for
Federated Learning', in, 2019 International Conference on Internet
of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), (IEEE,
2019)

190. Sarikaya, Y. and Ercetin, O., 'Motivating Workers in
Federated Learning: A Stackelberg Game Perspective', IEEE
Networking Letters, 2019, 2, (1), pp. 23-27.

191. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H.B., Patel, S., Ramage, D., Segal, A., and Seth, K.,
'Practical Secure Aggregation for Federated Learning on User-Held
Data', arXiv preprint arXiv:1611.04482, 2016.

192. Sabt, M., Achemlal, M., and Bouabdallah, A., 'Trusted
Execution Environment: What It Is, and What It Is Not', in, 2015
IEEE Trustcom/BigDataSE/ISPA, (IEEE, 2015)

193. Mo, F. and Haddadi, H., 'Efficient and Private Federated
Learning Using Tee', in, EuroSys, (2019)

194. Chen, Y., Luo, F., Li, T., Xiang, T., Liu, Z., and Li, J., 'A
Training-Integrity Privacy-Preserving Federated Learning Scheme
with Trusted Execution Environment', Information Sciences, 2020,
522, pp. 69-79.

195. Ji, J., Chen, X., Wang, Q., Yu, L., and L1, P., 'Learning to
Learn Gradient Aggregation by Gradient Descent', in, IJCAI (2019)
196. Li, S., Cheng, Y., Wang, W., Liu, Y., and Chen, T,
'Learning to Detect Malicious Clients for Robust Federated
Learning', arXiv preprint arXiv:2002.00211, 2020.

197. Rajput, S., Wang, H., Charles, Z., and Papailiopoulos, D.,
'Detox: A Redundancy-Based Framework for Faster and More
Robust Gradient Aggregation', in, Advances in neural information
processing systems, (2019)

198. Data, D., Song, L., and Diggavi, S., 'Data Encoding for
Byzantine-Resilient Distributed Optimization', arXiv preprint
arXiv:1907.02664, 2019.

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 29

199. Wang, S., Tuor, T., Salonidis, T., Leung, K.K., Makaya,
C., He, T., and Chan, K., 'Adaptive Federated Learning in Resource
Constrained Edge Computing Systems', IEEE Journal on Selected
Areas in Communications, 2019, 37, (6), pp. 1205-1221.

200. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra,
V., 'Federated Learning with Non-lid Data', arXiv preprint
arXiv:1806.00582, 2018.

201. Zhang, Y. and Yang, Q., 'A Survey on Multi-Task
Learning', arXiv preprint arXiv:1707.08114, 2017.

202. Hertz, J.A., Introduction to the Theory of Neural
Computation, (CRC Press, 2018)

203. Parisi, G.I., Tani, J., Weber, C., and Wermter, S., 'Lifelong
Learning of Human Actions with Deep Neural Network Self-
Organization', Neural Networks, 2017, 96, pp. 137-149.

204. Parisi, G.I., Tani, J., Weber, C., and Wermter, S., 'Lifelong
Learning of Spatiotemporal Representations with Dual-Memory
Recurrent Self-Organization', Frontiers in neurorobotics, 2018, 12,
p. 78.

205. Rabinowitz, N.C., Desjardins, G., Rusu, A.-A,
Kavukcuoglu, K., Hadsell, R.T., Pascanu, R., Kirkpatrick, J., and
Soyer, H.J., Progressive Neural Networks', (Google Patents, 2017)
206. Li, Z. and Hoiem, D., 'Learning without Forgetting', IEEE
transactions on pattern analysis and machine intelligence, 2017, 40,
(12), pp. 2935-2947.

207. Kemker, R., McClure, M., Abitino, A., Hayes, T., and
Kanan, C., 'Measuring Catastrophic Forgetting in Neural Networks',
in, Proceedings of the AAAI Conference on Atrtificial Intelligence,
(2018)

208. Liu, X., Masana, M., Herranz, L., Van de Weijer, J.,
Lopez, A.M., and Bagdanov, A.D., 'Rotate Your Networks: Better
Weight Consolidation and Less Catastrophic Forgetting', in, 2018
24th International Conference on Pattern Recognition (ICPR),
(IEEE, 2018)

2009. Ritter, H., Botev, A., and Barber, D., 'Online Structured
Laplace Approximations for Overcoming Catastrophic Forgetting',
arXiv preprint arXiv:1805.07810, 2018.

210. Lee, S.-W., Kim, J.-H., Jun, J., Ha, J.-W., and Zhang, B.-
T., 'Overcoming Catastrophic Forgetting by Incremental Moment
Matching', arXiv preprint arXiv:1703.08475, 2017.

211. Zenke, F., Poole, B., and Ganguli, S., 'Continual Learning
through Synaptic Intelligence', in, International Conference on
Machine Learning, (PMLR, 2017)

212. Robins, A., 'Catastrophic Forgetting in Neural Networks:
The Role of Rehearsal Mechanisms', in, Proceedings 1993 The First
New Zealand International Two-Stream Conference on Artificial
Neural Networks and Expert Systems, (IEEE, 1993)

213. Robins, A., 'Catastrophic Forgetting, Rehearsal and
Pseudorehearsal', Connection Science, 1995, 7, (2), pp. 123-146.
214. Gepperth, A. and Karaoguz, C., 'A Bio-Inspired
Incremental Learning Architecture for Applied Perceptual
Problems', Cognitive Computation, 2016, 8, (5), pp. 924-934.

215. Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert,
C.H., 'Icarl: Incremental Classifier and Representation Learning', in,
Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, (2017)

216. Ma, C., Konec¢ny, J., Jaggi, M., Smith, V., Jordan, M.I,
Richtarik, P., and Taka¢, M., 'Distributed Optimization with

Arbitrary Local Solvers', Optimization Methods and Software, 2017,
32, (4), pp. 813-848.

217. Jaggi, M., Smith, V., Takac, M., Terhorst, J., Krishnan, S.,
Hofmann, T., and Jordan, M.IL.,
Distributed Dual Coordinate Ascent', in neural
information processing systems, 2014, 27, pp. 3068-3076.

218. Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar,
A.S., 'Federated Multi-Task Learning', in, Advances in neural
information processing systems, (2017)

219. Kumar, S., Dutta, S., Chatturvedi, S., and Bhatia, M.,
'Strategies for Enhancing Training and Privacy in Blockchain
Enabled Federated Learning', in, 2020 IEEE Sixth International
Conference on Multimedia Big Data (BigMM), (IEEE, 2020)

220. Kopparapu, K. and Lin, E., 'Fedfmc: Sequential Efficient
Federated Learning on Non-lid Data', preprint
arXiv:2006.10937, 2020.

221. Yao, X. and Sun, L., 'Continual Local Training for Better
Initialization of Federated Models', in, 2020 IEEE International
Conference on Image Processing (ICIP), (IEEE, 2020)

222. Gonzalez, C., Sakas, G., and Mukhopadhyay, A., "'What Is
Wrong with Continual Learning in Medical Image Segmentation?',
arXiv preprint arXiv:2010.11008, 2020.

223. Ling, C.X. and Bohn, T., 'A Conceptual Framework for
Lifelong Learning', arXiv preprint arXiv:1911.09704, 2019.

224. Lomonaco, V.,
Architectures', 2019.

225. Shoham, N., Avidor, T., Keren, A., Israel, N., Benditkis,
D., Mor-Yosef, L., and Zeitak, 1., 'Overcoming Forgetting in
Federated Learning on Non-lid Data', preprint
arXiv:1910.07796, 2019.

226.

'Communication-Efficient
Advances

arXiv

'Continual Learning with Deep

arXiv

https://www.kaggle.com/datasets?search=smartphone&so
rt=votes, accessed Date Accessed
2217. Stokkink, Q., Epema, D., and Pouwelse, J., 'A Truly Self-
Sovereign Identity System', arXiv preprint arXiv:2007.00415, 2020.
228. Stokkink, Q. and Pouwelse, J., 'Deployment of a
Blockchain-Based Self-Sovereign Identity’, in, 2018 IEEE
international conference on Internet of Things (iThings) and IEEE
green computing and communications (GreenCom) and IEEE cyber,
physical and social computing (CPSCom) and IEEE smart data
(SmartData), (IEEE, 2018)
229. Pouwelse, J.A., Garbacki, P., Wang, J., Bakker, A., Yang,
J., Iosup, A., Epema, D.H., Reinders, M., Van Steen, M.R., and Sips,
H.J., "Tribler: A Social-Based Peer-to-Peer System', Concurrency
and computation: Practice and experience, 2008, 20, (2), pp. 127-
138.
230. Zeilemaker, N., Capotd, M., Bakker, A., and Pouwelse, J.,
"Tribler: P2p Media Search and Sharing', in, Proceedings of the 19th
ACM international conference on Multimedia, (2011)
231. Boyd, S., Ghosh, A., Prabhakar, B., and Shah, D.,
'Randomized Gossip Algorithms', IEEE transactions on information
theory, 2006, 52, (6), pp. 2508-2530.
232. Jin, P.H., Yuan, Q., Iandola, F., and Keutzer, K., 'How to
Scale Distributed Deep Learning?, arXiv preprint
arXiv:1611.04581, 2016.
233. Chang, H., Shejwalkar, V., Shokri, R., and Houmansadr,
A., 'Cronus: Robust and Heterogeneous Collaborative Learning with

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021 30

https://www.kaggle.com/datasets?search=smartphone&sort=votes
https://www.kaggle.com/datasets?search=smartphone&sort=votes

Black-Box Knowledge Transfer', arXiv preprint arXiv:1912.11279,
2019.

234, Xie, C., Koyejo, O., and Gupta, 1., 'Fall of Empires:
Breaking Byzantine-Tolerant Sgd by Inner Product Manipulation',
in, Uncertainty in Artificial Intelligence, (PMLR, 2020)

235. Cao, X. and Lai, L., 'Distributed Gradient Descent
Algorithm Robust to an Arbitrary Number of Byzantine Attackers',
IEEE Transactions on Signal Processing, 2019, 67, (22), pp. 5850-
5864.

236. Alistarh, D., Allen-Zhu, Z., and Li, J., 'Byzantine
Stochastic Gradient Descent', in, Advances in neural information
processing systems, (2018)

237. Chen, C., Zhang, J., Tung, A.K., Kankanhalli, M., and
Chen, G., 'Robust Federated Recommendation System', arXiv
preprint arXiv:2006.08259, 2020.

238. Lv,S., Ye,J.,, Yin, S, Cheng, X., Feng, C., Liu, X., Li, R,
Li, Z., Liu, Z., and Zhou, L., 'Unbalanced Private Set Intersection
Cardinality Protocol with Low Communication Cost', Future
Generation Computer Systems, 2020, 102, pp. 1054-1061.

239. De Cristofaro, E., Gasti, P., and Tsudik, G., 'Fast and
Private Computation of Cardinality of Set Intersection and Union',
in, International Conference on Cryptology and Network Security,
(Springer, 2012)

240. Holzapfel, K., Karl, M., Lotz, L., Carle, G., Djeffal, C.,
Fruck, C., Haack, C., Heckmann, D., Kindt, P.H., and K&ppl, M.,
'Digital Contact Tracing Service: An Improved Decentralized
Design for Privacy and Effectiveness', arXiv preprint
arXiv:2006.16960, 2020.

241. Kales, D., Rechberger, C., Schneider, T., Senker, M., and
Weinert, C., 'Mobile Private Contact Discovery at Scale', in, 28th
{USENIX} Security Symposium ({ USENIX} Security 19), (2019)
242. Pohlig, S. and Hellman, M., 'An Improved Algorithm for
Computing Logarithms over Gf (P) and Its Cryptographic
Significance (Corresp.)', IEEE transactions on information theory,
1978, 24, (1), pp. 106-110.

243. Shamir, A., Rivest, R.L., and Adleman, L.M., Mental
Poker', The Mathematical Gardner, (Springer, 1981)

MASTER THESIS | JOOST VERBRAEKEN | SUPERVISED BY DR. J. A. POUWELSE AND DR. DE VOS | 2021

31

