forked from williamd4112/gym-atari-human
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
162 lines (139 loc) · 5.22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gym
import argparse
import time
import pickle
# Copy from OpenAI baseline: https://github.com/openai/baselines
class EpisodicLifeEnv(gym.Wrapper):
def __init__(self, env):
"""Make end-of-life == end-of-episode, but only reset on true game over.
Done by DeepMind for the DQN and co. since it helps value estimation.
"""
gym.Wrapper.__init__(self, env)
self.lives = 0
self.was_real_done = True
def step(self, action):
obs, reward, done, info = self.env.step(action)
self.was_real_done = done
# check current lives, make loss of life terminal,
# then update lives to handle bonus lives
lives = self.env.unwrapped.ale.lives()
if lives < self.lives and lives > 0:
# for Qbert sometimes we stay in lives == 0 condtion for a few frames
# so its important to keep lives > 0, so that we only reset once
# the environment advertises done.
done = True
self.lives = lives
return obs, reward, done, info
def reset(self, **kwargs):
"""Reset only when lives are exhausted.
This way all states are still reachable even though lives are episodic,
and the learner need not know about any of this behind-the-scenes.
"""
if self.was_real_done:
obs = self.env.reset(**kwargs)
else:
# no-op step to advance from terminal/lost life state
obs, _, _, _ = self.env.step(0)
self.lives = self.env.unwrapped.ale.lives()
return obs
class NoopResetEnv(gym.Wrapper):
def __init__(self, env, noop_max=30):
"""Sample initial states by taking random number of no-ops on reset.
No-op is assumed to be action 0.
"""
gym.Wrapper.__init__(self, env)
self.noop_max = noop_max
self.override_num_noops = None
self.noop_action = 0
assert env.unwrapped.get_action_meanings()[0] == 'NOOP'
def reset(self, **kwargs):
""" Do no-op action for a number of steps in [1, noop_max]."""
self.env.reset(**kwargs)
if self.override_num_noops is not None:
noops = self.override_num_noops
else:
noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) #pylint: disable=E1101
assert noops > 0
obs = None
for _ in range(noops):
obs, _, done, _ = self.env.step(self.noop_action)
if done:
obs = self.env.reset(**kwargs)
return obs
def step(self, ac):
return self.env.step(ac)
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--env', help='Environment', type=str, default='MontezumaRevengeNoFrameskip-v4')
parser.add_argument('--delay', help='Delay time at each frame', type=float, default=0.03)
args = parser.parse_args()
env = gym.make(args.env)
env = NoopResetEnv(env)
env = EpisodicLifeEnv(env)
env.render()
exit = False
action_meaning = {key: idx for idx, key in enumerate(env.unwrapped.get_action_meanings())}
human_action = action_meaning['NOOP']
key_mapping = { 0xff51: ('LEFT', 1),
0xff52: ('UP', 0),
0xff53: ('RIGHT', 1),
0xff54: ('DOWN', 0),
ord('z'): ('FIRE', 2)}
# Ordered by the action meaning
key_buffer = [ '', # UP/DOWN
'', # LEFT/RIGHT
'' # FIRE
]
def get_act_from_key(key):
try:
a = key_mapping[key]
except KeyError:
print('Unknown key ', key)
return None
return a
def convert_key_buffer_to_atari_action():
action = ''.join(key_buffer)
if action == '':
return action_meaning['NOOP']
else:
try:
return action_meaning[action]
except KeyError:
print('Invalid key')
return action_meaning['NOOP']
def key_press(key, mod):
global exit
if int(key) == 32:
exit = True
return
a = get_act_from_key(key)
if a == None: return
key_buffer[a[1]] = a[0]
def key_release(key, mod):
a = get_act_from_key(key)
if a == None: return
key_buffer[a[1]] = ''
env.unwrapped.viewer.window.on_key_press = key_press
env.unwrapped.viewer.window.on_key_release = key_release
print('Arrow keys: UP/DOWN/LEFT/RIGHT; Z: FIRE')
print('Press space to exit.')
replay = []
s = env.reset()
episode_count = 0
while True:
env.render()
a = convert_key_buffer_to_atari_action()
stp_1, r, d ,_ = env.step(a)
replay.append((s, r, d, a, stp_1))
s = stp_1
time.sleep(args.delay)
if d:
print('Episode %d done; Timesteps: %d' % (episode_count, len(replay)))
env.reset()
episode_count += 1
if exit:
break
output_path = '%s-demo.pkl' % (args.env)
with open(output_path, 'wb') as f:
pickle.dump(replay, f)
print('Demonstration data is saved at %s.' % (output_path))