Skip to content
This repository was archived by the owner on Aug 29, 2020. It is now read-only.

Commit b1fbc3a

Browse files
committed
Awesome procedural generation space skybox
1 parent 6a8075d commit b1fbc3a

File tree

4 files changed

+344
-8
lines changed

4 files changed

+344
-8
lines changed

app.js

+3-3
Original file line numberDiff line numberDiff line change
@@ -193,16 +193,16 @@ export default class AppAnimationLoop extends AnimationLoop {
193193
fs: FRAGMENT_SHADER,
194194
geometry: new ColoredCubeGeometry()
195195
}),
196-
skybox: new SpaceSkybox(gl, {}, 512)
196+
skybox: new SpaceSkybox(gl, {}, SKYBOX_RES)
197197
};
198198
}
199199
onRender({gl, tick, aspect, pyramid, cube, skybox, canvas}) {
200200
gl.clear(GL.COLOR_BUFFER_BIT | GL.DEPTH_BUFFER_BIT);
201201

202202
updateCamera(this.camera);
203-
if(this.test){
203+
if(this.test || tick == Math.floor(tick/10)*10){
204204
this.test = false;
205-
skybox.renderCubemap(gl);
205+
skybox.renderCubemap(gl, this.camera.pos);
206206
}
207207

208208
gl.viewport(0, 0, canvas.width, canvas.height);

perlin.js

+182-1
Original file line numberDiff line numberDiff line change
@@ -102,4 +102,185 @@ export function perlin(params) {
102102
w
103103
);
104104
};
105-
}
105+
}
106+
107+
//GPU Realization
108+
109+
export const CLASSIC_NOISE_3D_SHADER = `
110+
//
111+
// GLSL textureless classic 3D noise "cnoise",
112+
// with an RSL-style periodic variant "pnoise".
113+
// Author: Stefan Gustavson (stefan.gustavson@liu.se)
114+
// Version: 2011-10-11
115+
//
116+
// Many thanks to Ian McEwan of Ashima Arts for the
117+
// ideas for permutation and gradient selection.
118+
//
119+
// Copyright (c) 2011 Stefan Gustavson. All rights reserved.
120+
// Distributed under the MIT license. See LICENSE file.
121+
// https://github.com/stegu/webgl-noise
122+
//
123+
124+
vec3 mod289(vec3 x)
125+
{
126+
return x - floor(x * (1.0 / 289.0)) * 289.0;
127+
}
128+
129+
vec4 mod289(vec4 x)
130+
{
131+
return x - floor(x * (1.0 / 289.0)) * 289.0;
132+
}
133+
134+
vec4 permute(vec4 x)
135+
{
136+
return mod289(((x*34.0)+1.0)*x);
137+
}
138+
139+
vec4 taylorInvSqrt(vec4 r)
140+
{
141+
return 1.79284291400159 - 0.85373472095314 * r;
142+
}
143+
144+
vec3 fade(vec3 t) {
145+
return t*t*t*(t*(t*6.0-15.0)+10.0);
146+
}
147+
148+
// Classic Perlin noise
149+
float cnoise(vec3 P)
150+
{
151+
vec3 Pi0 = floor(P); // Integer part for indexing
152+
vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1
153+
Pi0 = mod289(Pi0);
154+
Pi1 = mod289(Pi1);
155+
vec3 Pf0 = fract(P); // Fractional part for interpolation
156+
vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
157+
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
158+
vec4 iy = vec4(Pi0.yy, Pi1.yy);
159+
vec4 iz0 = Pi0.zzzz;
160+
vec4 iz1 = Pi1.zzzz;
161+
162+
vec4 ixy = permute(permute(ix) + iy);
163+
vec4 ixy0 = permute(ixy + iz0);
164+
vec4 ixy1 = permute(ixy + iz1);
165+
166+
vec4 gx0 = ixy0 * (1.0 / 7.0);
167+
vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
168+
gx0 = fract(gx0);
169+
vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
170+
vec4 sz0 = step(gz0, vec4(0.0));
171+
gx0 -= sz0 * (step(0.0, gx0) - 0.5);
172+
gy0 -= sz0 * (step(0.0, gy0) - 0.5);
173+
174+
vec4 gx1 = ixy1 * (1.0 / 7.0);
175+
vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
176+
gx1 = fract(gx1);
177+
vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
178+
vec4 sz1 = step(gz1, vec4(0.0));
179+
gx1 -= sz1 * (step(0.0, gx1) - 0.5);
180+
gy1 -= sz1 * (step(0.0, gy1) - 0.5);
181+
182+
vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
183+
vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
184+
vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
185+
vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
186+
vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
187+
vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
188+
vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
189+
vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
190+
191+
vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
192+
g000 *= norm0.x;
193+
g010 *= norm0.y;
194+
g100 *= norm0.z;
195+
g110 *= norm0.w;
196+
vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
197+
g001 *= norm1.x;
198+
g011 *= norm1.y;
199+
g101 *= norm1.z;
200+
g111 *= norm1.w;
201+
202+
float n000 = dot(g000, Pf0);
203+
float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
204+
float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
205+
float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
206+
float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
207+
float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
208+
float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
209+
float n111 = dot(g111, Pf1);
210+
211+
vec3 fade_xyz = fade(Pf0);
212+
vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
213+
vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
214+
float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
215+
return 2.2 * n_xyz;
216+
}
217+
218+
// Classic Perlin noise, periodic variant
219+
float pnoise(vec3 P, vec3 rep)
220+
{
221+
vec3 Pi0 = mod(floor(P), rep); // Integer part, modulo period
222+
vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); // Integer part + 1, mod period
223+
Pi0 = mod289(Pi0);
224+
Pi1 = mod289(Pi1);
225+
vec3 Pf0 = fract(P); // Fractional part for interpolation
226+
vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
227+
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
228+
vec4 iy = vec4(Pi0.yy, Pi1.yy);
229+
vec4 iz0 = Pi0.zzzz;
230+
vec4 iz1 = Pi1.zzzz;
231+
232+
vec4 ixy = permute(permute(ix) + iy);
233+
vec4 ixy0 = permute(ixy + iz0);
234+
vec4 ixy1 = permute(ixy + iz1);
235+
236+
vec4 gx0 = ixy0 * (1.0 / 7.0);
237+
vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
238+
gx0 = fract(gx0);
239+
vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
240+
vec4 sz0 = step(gz0, vec4(0.0));
241+
gx0 -= sz0 * (step(0.0, gx0) - 0.5);
242+
gy0 -= sz0 * (step(0.0, gy0) - 0.5);
243+
244+
vec4 gx1 = ixy1 * (1.0 / 7.0);
245+
vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
246+
gx1 = fract(gx1);
247+
vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
248+
vec4 sz1 = step(gz1, vec4(0.0));
249+
gx1 -= sz1 * (step(0.0, gx1) - 0.5);
250+
gy1 -= sz1 * (step(0.0, gy1) - 0.5);
251+
252+
vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
253+
vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
254+
vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
255+
vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
256+
vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
257+
vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
258+
vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
259+
vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
260+
261+
vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
262+
g000 *= norm0.x;
263+
g010 *= norm0.y;
264+
g100 *= norm0.z;
265+
g110 *= norm0.w;
266+
vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
267+
g001 *= norm1.x;
268+
g011 *= norm1.y;
269+
g101 *= norm1.z;
270+
g111 *= norm1.w;
271+
272+
float n000 = dot(g000, Pf0);
273+
float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
274+
float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
275+
float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
276+
float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
277+
float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
278+
float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
279+
float n111 = dot(g111, Pf1);
280+
281+
vec3 fade_xyz = fade(Pf0);
282+
vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
283+
vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
284+
float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
285+
return 2.2 * n_xyz;
286+
}`;

simplex.js

+105
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,105 @@
1+
export const SIMPLEX_NOISE_3D_SHADER = `
2+
//
3+
// Description : Array and textureless GLSL 2D/3D/4D simplex
4+
// noise functions.
5+
// Author : Ian McEwan, Ashima Arts.
6+
// Maintainer : stegu
7+
// Lastmod : 20110822 (ijm)
8+
// License : Copyright (C) 2011 Ashima Arts. All rights reserved.
9+
// Distributed under the MIT License. See LICENSE file.
10+
// https://github.com/ashima/webgl-noise
11+
// https://github.com/stegu/webgl-noise
12+
//
13+
14+
vec3 mod289(vec3 x) {
15+
return x - floor(x * (1.0 / 289.0)) * 289.0;
16+
}
17+
18+
vec4 mod289(vec4 x) {
19+
return x - floor(x * (1.0 / 289.0)) * 289.0;
20+
}
21+
22+
vec4 permute(vec4 x) {
23+
return mod289(((x*34.0)+1.0)*x);
24+
}
25+
26+
vec4 taylorInvSqrt(vec4 r)
27+
{
28+
return 1.79284291400159 - 0.85373472095314 * r;
29+
}
30+
31+
float snoise(vec3 v)
32+
{
33+
const vec2 C = vec2(1.0/6.0, 1.0/3.0) ;
34+
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);
35+
36+
// First corner
37+
vec3 i = floor(v + dot(v, C.yyy) );
38+
vec3 x0 = v - i + dot(i, C.xxx) ;
39+
40+
// Other corners
41+
vec3 g = step(x0.yzx, x0.xyz);
42+
vec3 l = 1.0 - g;
43+
vec3 i1 = min( g.xyz, l.zxy );
44+
vec3 i2 = max( g.xyz, l.zxy );
45+
46+
// x0 = x0 - 0.0 + 0.0 * C.xxx;
47+
// x1 = x0 - i1 + 1.0 * C.xxx;
48+
// x2 = x0 - i2 + 2.0 * C.xxx;
49+
// x3 = x0 - 1.0 + 3.0 * C.xxx;
50+
vec3 x1 = x0 - i1 + C.xxx;
51+
vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
52+
vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y
53+
54+
// Permutations
55+
i = mod289(i);
56+
vec4 p = permute( permute( permute(
57+
i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
58+
+ i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
59+
+ i.x + vec4(0.0, i1.x, i2.x, 1.0 ));
60+
61+
// Gradients: 7x7 points over a square, mapped onto an octahedron.
62+
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
63+
float n_ = 0.142857142857; // 1.0/7.0
64+
vec3 ns = n_ * D.wyz - D.xzx;
65+
66+
vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)
67+
68+
vec4 x_ = floor(j * ns.z);
69+
vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)
70+
71+
vec4 x = x_ *ns.x + ns.yyyy;
72+
vec4 y = y_ *ns.x + ns.yyyy;
73+
vec4 h = 1.0 - abs(x) - abs(y);
74+
75+
vec4 b0 = vec4( x.xy, y.xy );
76+
vec4 b1 = vec4( x.zw, y.zw );
77+
78+
//vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
79+
//vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
80+
vec4 s0 = floor(b0)*2.0 + 1.0;
81+
vec4 s1 = floor(b1)*2.0 + 1.0;
82+
vec4 sh = -step(h, vec4(0.0));
83+
84+
vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
85+
vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;
86+
87+
vec3 p0 = vec3(a0.xy,h.x);
88+
vec3 p1 = vec3(a0.zw,h.y);
89+
vec3 p2 = vec3(a1.xy,h.z);
90+
vec3 p3 = vec3(a1.zw,h.w);
91+
92+
//Normalise gradients
93+
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
94+
p0 *= norm.x;
95+
p1 *= norm.y;
96+
p2 *= norm.z;
97+
p3 *= norm.w;
98+
99+
// Mix final noise value
100+
vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
101+
m = m * m;
102+
return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
103+
dot(p2,x2), dot(p3,x3) ) );
104+
}
105+
`;

0 commit comments

Comments
 (0)